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Abstract. In this work, we extend a previously demonstrated entropy
based groupwise registration method to include a free-form deformation
model based on B-splines. We provide an efficient implementation using
stochastic gradient descents in a multi-resolution setting. We demon-
strate the method in application to a set of 50 MRI brain scans and
compare the results to a pairwise approach using segmentation labels to
evaluate the quality of alignment. Our results indicate that increasing
the complexity of the deformation model improves registration accuracy
significantly, especially at cortical regions.

1 Introduction

Groupwise registration is an important tool in medical image analysis for es-
tablishing anatomical correspondences among subjects in a population [1, 2].
A groupwise registration scheme can be used to characterize anatomical shape
differences within and across populations [3].

A common approach is to register every subject in the population to a ref-
erence subject using pairwise registrations. However, due to anatomical vari-
abilities among human brains, a registration scheme based on a single subject
introduces a bias towards the shape of the selected subject[3].

Seghers et al. [4] refrain from choosing an anatomical reference by considering
all pairwise registrations between subjects in the population. They generate an
atlas with a mean morphology by composing the deformations for each subject
into a mean deformation. Park et al. [5] also consider all combinations of pairs
in the population and use multi dimensional scaling to select the reference sub-
ject closest to the mean of the population. Both methods improve the pairwise
approach by considering all combinations of pairs in the population; however,
computational complexity can be high as the number of required pairwise regis-
trations grows quadratically with the number of images.

More efficient groupwise registration methods can be developed by making
use of a template constructed from the statistics of the population. Joshi et al.
[6] register all subjects in the population to a mean intensity image in a large
deformation diffeomorphic setting. Christensen et al. [7] consider deformations
from the average intensity image to the population and minimize correspon-
dence errors by using inverse consistent transforms. Bhatia et al. [8] make use
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of the statistics in the population by computing normalized mutual information
between a reference frame and the joint histogram of all pairs of intensities.
They describe a deformation model based on B-splines and define a common
coordinate frame by constraining the average transformation in the population
to be the identity transform. Twining et al. [9] combine groupwise registration
and construction of a template in a minimum description length framework us-
ing clamped-plate splines as a deformation model. In a recent work, Blezek and
Miller [10] point out that a population can have a multi-modal distribution. They
consider pairwise distances between subjects and construct templates from sub-
sets of subjects by using mean shift algorithm to search for the modes in the
population. Their results indicate that a registration method based on a single
template may not account for all the variability in a population.

Selection of a template can be avoided if the population is considered as a
whole and the deformations leading to the common coordinate frame are found
simultaneously for all subjects. Studholme et al. [11] extend concepts from multi-
modal image alignment and use the joint entropy of intensity distributions as an
objective function. Their objective function measures probabilistic dependencies
between intensity values in images and is robust both to global and local intensity
variations. However, computing the entropy of a high dimensional distribution
is a computationally expensive task.

Miller et al. [12] introduce an efficient groupwise registration method in which
they consider sum of univariate entropies along pixel stacks as a joint alignment
criterion. Their method provides a template-free approach to groupwise registra-
tion by simultaneously driving all subjects to the common tendency of popula-
tion. Zollei et al. [13] successfully applied this method to groupwise registration
of medical images using affine transforms and used stochastic gradient descent
for optimization.

In our work, we extend Miller et al.’s [12] method to include free-form defor-
mations based on B-splines in 3D. We describe an efficient implementation using
stochastic gradient descent in a multi-resolution setting. We validate the method
on a set of 50 MR images using segmentation label alignment as an independent
measure of registration quality. To compare the results to a pairwise approach
we use a template based method similar to Joshi et al. [6] where we register
every subject to the mean image using sum of squared differences.

This paper is organized as follows. In the next section, we describe the stack
entropy cost function, introduce B-spline based deformation model and discuss
implementation details. In Section 3, we compare groupwise registration to the
pairwise method and evaluate both methods using label prediction values. We
conclude by discussing groupwise and pairwise registration approaches.

2 Methods

Given a set of images {I1, . . . , IN}, each described by intensity values In(xn)
across the image space xn ∈ Xn, we can define a common reference frame xR ∈
XR and a set of transforms T which maps points from the reference frame to
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points in the image space

T = {Tn : xn = Tn(xR), n = 1, . . . , N} (1)

Mapped intensities in the reference frame xR can be given by

I
′

n(xR) = In(Tn(xR)) (2)

In the following section, we describe the stack entropy cost function as in-
troduced by Miller et al. [12] and applied to groupwise registration of medical
images using affine transforms by Zollei et al. [13]. We continue by describing our
transformation model and extend Miller et al.’s [12] method to include free-form
deformations based on B-splines.

2.1 Stack Entropy Cost Function

In order to align all subjects in the population, we consider sum of pixelwise
entropies as a joint alignment criterion. The justification for this approach is that
if the images are aligned properly, intensity values at corresponding coordinate
locations from all the images will form a low entropy distribution. This approach
does not require the use of a reference subject; all subjects are simultenously
driven to the common tendency of the population.

We let xv ∈ XR be a sample from a spatial location in the reference frame
and H(I(T (xv))) be the univariate entropy of the stack of pixel intensities
{I1(T1(xv)), . . . , IN (TN (xv))} at spatial location xv. The objective function for
the groupwise registration can be given as follows

f =
V∑
v=1

H(I(T (xv))). (3)

To derive this objective function, the intensity samples over the space are as-
sumed to be independent and are allowed to come from different distributions.
At each particular spatial location xv, pixel intensities along the image stack
are assumed to be i.i.d samples, therefore allowing the evaluation of univariate
entropies.

We employ a Parzen window based density estimation scheme to estimate
univariate entropies [14]:

f = −
V∑
v=1

1
N

N∑
i=1

log
1
N

N∑
j=1

Gσ(dij(xv)) (4)

where dij(x) = Ii(Ti(x))−Ij(Tj(x)) is the distance between intensity values of a
pair of images evaluated at a point in the reference frame and Gσ is a Gaussian
kernel with variance σ2. The objective function achieves its minimum when the
intensity differences are small. Using the entropy measure we obtain a better
treatment of transitions between different tissue types, such as gray matter-
white matter transitions in the cortical regions where intensity distributions can
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be multi-modal. Parzen window density estimator allows us to obtain analytical
expressions for the derivative of the objective function with respect to transform
parameters

∂f

∂Tn
=

V∑
v=1

1
σ2N

N∑
i=1

N∑
j=1

Gσ(dij(xv))dij(xv)∑N
k=1Gσ(dik(xv))

∂dij(xv)
∂Tn

. (5)

2.2 Free-Form B-spline Deformation Model

For the nonrigid deformation model, we define a combined transformation con-
sisting of a global and a local component

T (x) = Tlocal(Tglobal(x)) (6)

where Tglobal is a twelve parameter affine transform and Tlocal is a deformation
model based on B-splines.

Following Rueckert et al.’s formulation [15], we let Φ denote an nx×ny×nz
grid of control points Φi,j,k with uniform spacing. The free form deformation can
be written as the 3-D tensor product of 1-D cubic B-splines.

Tlocal(x) = x +
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)Φi+l,j+m,k+n (7)

where x = (x, y, z), i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, u =
x/nx − bx/nxc, v = y/ny − by/nyc, w = z/nz − bz/nzc and where Bl is l’th
cubic B-spline basis function. Using the same expressions for u, v and w as above,
the derivative of the deformation field with respect to B-spline coefficients can
be given by

∂Tlocal(x, y, z)
∂Φi,j,k

= Bl(u)Bm(v)Bn(w) (8)

where l = i − bx/nxc + 1, m = j − by/nyc + 1 and n = k − bz/nzc + 1. We
consider Bl(u) = 0 for l < 0 and l > 3. The derivative terms are nonzero only
in the neighborhood of a given point. Therefore, optimization of the objective
function using gradient descent can be implemented efficiently.

As none of the images are chosen as an anatomical reference, it is necessary
to add a geometric constraint to define the reference coordinate frame. Similar
to Bhatia et al. [8], we define the reference frame by constraining the average
deformation to be the identity transform:

1
N

N∑
n=1

Tn(x) = x (9)

This constraint assures that the reference frame lies in the center of the pop-
ulation. In the case of B-splines, the constraint can be satisfied by constraining
the sum of B-spline coefficients across images to be zero. In the gradient descent
optimization scheme, the constraint can be forced by subtracting the mean from
each update vector [8].
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2.3 Implementation Details

We provide an efficient optimization scheme by using line search with the gra-
dient descent algorithm. For computational efficiency, we employ a stochastic
subsampling procedure [16]. In each iteration of the algorithm, a random subset
is drawn from all samples and the objective function is evaluated only on this
sample set. The number of samples to be used in this method depends on the
number of the parameters of the deformation field. Using the number of samples
on the order of the number of variables works well in practice.

To obtain a dense deformation field capturing anatomical variations at dif-
ferent scales, we gradually increase the complexity of the deformation field by
refining the grid of B-spline control points. First, we perform a global registra-
tion with affine transforms. Then, we use affine transforms to initialize a low
resolution deformation field at a grid spacing around 32 voxels. We increase the
resolution of the deformation field to 8 voxels by using registration results at
coarser grids to initialize finer grids.

As in every iterative search algorithm, local minima pose a significant prob-
lem. To avoid local minima we use a multi-resolution optimization scheme for
each resolution level of the deformation field. The registration is first performed
at a coarse scale by downsampling the input. Results from coarser scales are
used to initialize optimization at finer scales. For each resolution level of the
deformation field we used a multi-resolution scheme of three image resolution
levels.

We implemented our groupwise registration method in a multi-threaded fash-
ion using Insight Toolkit (ITK) and made the implementation publicly available
[17]. We run experiments using a dataset of 50 MR images with 256× 256× 128
voxels on a workstation with four CPUs and 8GB of memory. The running time
of the algorithm is about 20 minutes for affine registration and six hours for
non-rigid registration of the entire dataset. The memory requirement of the al-
gorithm depends linearly on the number of input images and was around 3GB
for our dataset.

3 Evaluation

We tested the groupwise registration algorithm on a MR brain dataset and com-
pared the results to a pairwise approach [6]. The dataset consists of 50 MR
brain images of three subgroups: schizophrenics, affected disorder and normal
control patients. MR images are T1 scans with 256 × 256 × 128 voxels and
0.9375× 0.9375× 1.5 mm3 spacing. MR images are preprocessed by skull strip-
ping. To account for global intensity variations, images are normalized to have
zero mean and unit variance. For each image in the dataset, an automatic tis-
sue classification [18] was performed, yielding gray matter (GM), white matter
(WM) and cerebro-spinal fluid (CSF) labels. In addition, manual segmentations
of four subcortical regions (left and right hippocampus and amygdala) and four
cortical regions (left and right superior temporal gyrus and para-hippocampus)
were available for each MR image.
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Fig. 1. Central slices of 3D volumes for groupwise and pairwise approaches. Rows
show mean and standard deviation images followed by label overlap images for
GM, WM and CSF labels. The intensity of standard deviation images is scaled
by 5 for visualization only. Columns display the results for affine and B-splines
with grid spacing of 32 voxels, 16 voxels and 8 voxels, respectively.

We compare our groupwise algorithm to a pairwise method where we register
each subject to the mean intensity using sum of square differences. The objective
function for pairwise registration to the mean can be described as follows

fpair =
N∑
n=1

(In(Tn(x))− µ(x))2 (10)

where µ is defined as the mean of the intensities µ(x) = 1
N

∑N
n=1 In(Tn(x)). Dur-

ing each iteration we consider the mean image as a reference image and register
every subject to the mean image using sum of squared differences. After each
iteration the mean image is updated and pairwise registrations are performed
until convergence.

The images in Figure 1 show central slices of 3D images after registration. Vi-
sually, mean images get sharper and variance images becomes darker, especially
around central ventricles and cortical regions. We can observe that anatomical
variability at cortical regions causes significant blur for GM, WM and CSF struc-
tures using affine registration. Finer scales of B-spline deformation fields capture
a significant part of this anatomical variability and the tissue label overlap im-
ages get sharper.

We evaluate registration results by measuring label prediction accuracy in a
leave-one-out fashion for the two different sets of segmentation labels. To predict
the segmentation labels of a subject, we use majority voting for the labels in the
rest of the population. We compute the Dice measure between the predicted and
the true labels and average over the whole population.
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GM WM Subcortical Cortical
group pair group pair group pair group pair

Affine 51 ± 2 51 ± 2 55 ± 2 55 ± 2 55 ± 8 53 ± 9 18 ± 5 16 ± 4
Bspline, 32 voxels 55 ± 2 55 ± 2 58 ± 1 58 ± 1 57 ± 8 56 ± 8 28 ± 5 26 ± 5
Bspline, 16 voxels 57 ± 2 56 ± 2 61 ± 3 60 ± 2 56 ± 9 53 ± 10 32 ± 6 29 ± 7
Bspline, 8 voxels 60 ± 2 59 ± 2 65 ± 4 63 ± 3 53 ±10 51 ± 10 38 ± 8 34 ± 8

Table 1. Average percent overlap (Dice) between the predicted and true labels
for automatically segmented tissue types: GM,WM and manual segmentations
for cortical and subcortical structures. Standard deviation across population are
shown. Methods yielding higher overlap values are highlighted in boldface.

The prediction accuracy reported in Table 1 is lower than what is typically
achieved by segmentation methods. This is to be expected as our relatively sim-
ple label prediction method only considers voxelwise majority of the labels in
the population and does not use the novel image intensity to predict the labels.
Effectively, Table 1 reports the accuracy of the spatial prior (atlas) in predicting
the labels before the local intensity is used to refine the segmentation. Increasing
the complexity of the deformation model improves the accuracy of prediction.
An interesting open problem is automatically identifying the appropriate defor-
mation complexity before the registration overfits and the accuracy of prediction
goes down. We also note that the alignment of the subcortical structures is much
better than that of the cortical regions. It is not surprising as the registration
algorithm does not use the information about geometry of the cortex to opti-
mize the alignment of the cortex. In addition, it has been often observed that
the cortical structures exhibit higher variability across subjects when considered
in the 3D volume rather than modelled on the surface.

Our experiments highlight the need for further research in developing eval-
uation criteria for image alignment. We used the standard Dice measure, but
it is not clear that this measurement captures all the nuances of the resulting
alignment.

Comparing the groupwise registration to the pairwise approach, we observe
that the sharpness of the mean images and the tissue overlaps in Figure 1 look
visually similar. From Table 1, we note that groupwise registration performs
slightly better than the pairwise setting in most of the cases, especially as we
increase the complexity of the warp. This suggests that considering the popula-
tion as a whole and registering subjects jointly brings the population into better
alignment than matching each subject to a mean template image. However, the
advantage shown here is only slight; more comparative studies are needed of the
two approaches.

4 Conclusion

In this work, we used a free-form deformation model based on B-splines to ex-
tend a previously demonstrated entropy based groupwise registration method.
We described an efficient implementation of this method by using stochastic gra-
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dient descent in a multi-resolution setting. We applied the method to a set of 50
MRI brain scans and compared the results to a pairwise approach. We evaluated
registration accuracy using label agreement in the group to predict the labels for
new subjects and observed that a groupwise registration algorithm can achieve
better accuracy than a pairwise approach by robustly handling multi-modal dis-
tributions. Our results indicate that nonrigid registration improves registration
accuracy significantly, especially at cortical regions.
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