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Abstract—The main goal of this work is the generation of
ground-truth data for the validation of atrophy measurement
techniques, commonly used in the study of neurodegenerative
diseases such as dementia. Several techniques have been used to
measure atrophy in cross-sectional and longitudinal studies, but
it is extremely difficult to compare their performance since they
have been applied to different patient populations. Furthermore,
assessment of performance based on phantom measurements or
simple scaled images overestimates these techniques’ ability to
capture the complexity of neurodegeneration of the human brain.
We propose a method for atrophy simulation in structural mag-
netic resonance (MR) images based on finite-element methods.
The method produces cohorts of brain images with known change
that is physically and clinically plausible, providing data for
objective evaluation of atrophy measurement techniques. Atrophy
is simulated in different tissue compartments or in different
neuroanatomical structures with a phenomenological model. This
model of diffuse global and regional atrophy is based on volu-
metric measurements such as the brain or the hippocampus, from
patients with known disease and guided by clinical knowledge
of the relative pathological involvement of regions and tissues.
The consequent biomechanical readjustment of structures is
modelled using conventional physics-based techniques based on
biomechanical tissue properties and simulating plausible tissue
deformations with finite-element methods. A thermoelastic model
of tissue deformation is employed, controlling the rate of progres-
sion of atrophy by means of a set of thermal coefficients, each one
corresponding to a different type of tissue. Tissue characterization
is performed by means of the meshing of a labelled brain atlas,
creating a reference volumetric mesh that will be introduced
to a finite-element solver to create the simulated deformations.
Preliminary work on the simulation of acquisition artefacts is
also presented. Cross-sectional and longitudinal sets of simulated
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data are shown and a visual classification protocol has been used
by experts to rate real and simulated scans according to their
degree of atrophy. Results confirm the potential of the proposed
methodology.

Index Terms—Alzheimer’s disease, atlas, atrophy simulation,
creation of validation image databases, dementia, design of ground
truth, finite-element methods, magnetic resonance imaging, mesh
warping, modelling, validation.

I. INTRODUCTION

DEMENTIA, the progressive impairment of multiple cog-
nitive domains, represents a devastating personal, socio-

economic, and public health burden that currently affects
millions of elderly subjects worldwide. An estimated 24 million
people havedementia today, and this figure will double in the next
20 years [1]. Symptomatic treatments for Alzheimer’s disease
(AD), the most common cause of dementia, are now available
but have only modest benefit and are not thought to slow the
relentless progression of pathology. Major efforts are under way
to find effective disease-modifying agents [2]. As part of those
efforts, there is great interest in using imaging in a number of
different ways: to differentiate different causes of cognitive de-
cline, to identify individuals at the earliest stages, and to evaluate
the effects of pharmacological interventions on these diseases.
The pattern of cerebral atrophy on magnetic resonance imaging
(MRI) is currently used to help differentiate the degenerative
dementias (e.g., AD from frontotemporal dementia) while the
rate of atrophy may be used to detect early disease and potentially
to assess disease-modifying effects of therapies [3], [4].

In early AD, the hallmark neurofibrillary tangles and amy-
loid plaques are accompanied by progressive neuronal loss [5].
This loss is manifested at a macroscopic level by increased rates
of cerebral atrophy, which is detectable in vivo by MRI [6].
The regional distribution of cellular damage due to different
pathologies leads to different spatial patterns of atrophy in dif-
ferent dementias [7]–[9], varying in location, intensity, and tem-
poral evolution. Assessment of atrophy can be confounded by
volume loss due to normal aging, which also occurs in patients
along with additional pathological processes [10]–[13]. Several
studies indicate a strong correlation between rate of atrophy,
rate of cognitive decline, and risk of future decline [3], [8],
[14]–[17]. Visual inspection or manually traced measurements
of regions of interest have been used previously for the quantifi-
cation of atrophy. However, these methods are subject to prob-
lems of insensitivity and lack of reproducibility, as well as being
labor-intensive.
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Algorithms referred to as computational anatomy [18], [19]
are computerized approaches that offer automated or semi-au-
tomated solutions for MRI analysis, including quantification of
cerebral atrophy. A large variety of methods have been specif-
ically developed for cross-sectional [14], [20]–[24], [24]–[28]
and longitudinal [11], [14], [29]–[36] studies. There is a lack
of a gold standard against which to judge these methods or to
help refine them. There is a real need for ground-truth data to be
made available for validating both cross-sectional and longitu-
dinal image analysis applications.

There have been limited attempts to model the complex ef-
fects on regional structural volumes and structural configura-
tion that are a consequence of neurodegeneration. Cerebral at-
rophy has been simulated by globally scaling images [29] to ef-
fect a global reduction in brain-tissue volume. Simple scalings,
however, produce an unrealistic reduction in cerebrospinal fluid
(CSF) volume; in vivo CSF volumes increase as a result of tissue
loss. In practice, the disease processes underlying dementia re-
sult in brain volume changes that are both tissue and location
dependent. Therefore, sufficiently realistic atrophy simulation
methods must be able to model local changes. Localized scaling
has been used to validate atrophy measurements in small struc-
tures [21], [27], [37]. Lao et al. [27] proposed a classification
method using RAVENS maps [21] and they then simulated at-
rophy by reducing the intensity values of these maps in a cubic
region centered on a manually selected voxel, as well as by in-
troducing morphological differences in several manually delin-
eated structures. Chen et al. [32] simulated atrophy by replacing
intensities within grey matter boundaries in a local brain region
manually defined with Gaussian distributed random numbers
having the CSF mean intensity and different percentages of the
CSF standard deviation. Xue et al. [38] employed a technique
developed by Karacali et al. [39] in which the atrophy is sim-
ulated by matching the Jacobian of a deformation, applied to
the baseline scans, to the desired volumetric changes subject
to smoothness and topology-preserving constraints. The main
drawback of these approaches is that they do not take into ac-
count the interrelation of different tissue types.

We present a method for the simulation of atrophy in mag-
netic resonance (MR) images of the brain in which atrophy
can be simulated in different tissue compartments and/or in
different neuroanatomical structures with a phenomenological
model. This model is guided by differential pathological burden
in different brain regions. Once volume changes have been
defined in particular structures and tissues, the overall impact
on brain shape is determined by a conventional physics-based
biomechanical model. This model is solved using the finite-el-
ement method (FEM) and is guided by literature values of the
mechanical properties of tissue. The consequent biomechanical
readjustment of structures is modelled using conventional
physics-based techniques based on biomechanical tissue
properties and simulating plausible tissue deformations with
FEM. This validation framework was proposed by Schnabel
et al. [40], for the analysis of MR mammography data. In our
application, a thermoelastic model of tissue deformation is
employed, controlling the rate of progression of atrophy by
means of a set of thermal coefficients, each one corresponding
to a different type of tissue. The thermoelastic model has no

basis in the disease, but provides a straightforward way to
give each element a coefficient of expansion that controls the
volume change of this element relative to others.

The proposed technique can be divided into three main steps:
1) meshing of a labelled brain atlas; 2) its introduction into an
FEM solver that will generate the simulated deformations; 3) the
application of such deformations to the grey-level version of the
brain atlas. In this paper, we describe the methodology and show
some examples of simulations involving localized atrophy. We
also show how the simulated images can be made more realistic
by including realistic noise, bulk motion, and pulsatile motion
artefacts. A qualitative visual classification experiment has been
designed to rate the simulated and real data according to their
atrophy to study whether simulated scans can mislead expert ob-
servers. Our method simulates biologically plausible degenera-
tive changes, generating images that can be used in an objective
validation of the current methods for the analysis of cross-sec-
tional or longitudinal studies. The availability of realistic image
data with a gold standard is a key aspect of improving image
processing algorithms, as it is only by understanding where a
technique fails that a rational approach to modifying the tech-
nique to improve its performance can be taken.

The paper is organized as follows. Section II describes the
mesh generation step, while Sections III and IV are devoted to
the finite-element model and the application of the resulting
deformations, respectively. Some examples of simulations,
including cross-sectional and longitudinal cases, are shown in
Section V. In Section VI, the simulation of acquisition artefacts
is described. The visual classification protocol used by experts
to rate real and simulated scans and its results are detailed in
Section VII. Finally, in Sections VIII and IX, we present a
discussion and the conclusions of this work.

II. MESH GENERATION

A. Reference Labelled Image

Neuroanatomical atlases play an important role in brain anal-
ysis techniques, and are routinely used in procedures such as
segmentation or spatial normalization. The most general form
of an atlas is a statistical model of the population variation of
anatomical structures. More common and still extremely useful
are atlases which represent “typical” anatomy. They are mostly
composed of manual or semiautomatic expert-segmented labels,
and some are publicly available. In this work, we have combined
information from two such atlases of the brain to generate the
reference labelled image and mesh used by the FEM solver: the
Montreal Neurological Institute (MNI) Brainweb1 [41]; and the
International Consortium of Brain Mapping (ICBM)2 atlases.
The MNI atlas was created from the average of 27 T1 weighted
MRI acquisitions of a single young control subject, and provides
a high-resolution segmentation of nine different tissue labels.
The ICBM Template and Probabilistic atlases feature more spe-
cific brain parcellations, including cerebral lobes, cortical gyri,
and subcortical structures.

For our purposes, we have taken into account the tissue labels
from the MNI atlas, including the CSF, the grey matter (GM),

1http://www.bic.mni.mcgill.ca/brainweb/.
2http://www.loni.ucla.edu/ICBM/.
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Fig. 1. Mesh generation procedure. Left: Cutting plane of the volumetric finite-element mesh. Center: Superimposition of the mesh with some slices of the grey-
level version of the MNI atlas. Slices of the MNI atlas (top right) and the rasterization image (bottom right) generated from the labelled mesh, in which some of
the used labels are shown (X11 colors): GM, light green; WM, cyan; cortical CSF, cornflowerblue; ventricles, greenyellow; MTL grey matter, red; subtentorial
structures, yellow; hippocampi, limegreen; ERA, dark orange.

the white matter (WM), together with a zero label that includes
the background, the skull, and other tissues such as the muscle
or the skin. We have also incorporated labels for the hippocampi
and the lateral ventricles (thus, separating the CSF into ventric-
ular and cortical CSF labels), obtained from a semi-automatic
segmentation by clinical experts [42], due to their importance
as biomarkers in dementia. In addition, we have incorporated
the cerebral lobe labels from the ICBM Probabilistic atlas (to
generate local atrophy, e.g., in the medial temporal lobe) using
an affine registration technique in order to place this atlas in the
same geometrical space as the MNI one. Finally, two additional
labels from the ICBM Template atlas have been included: a label
covering the subtentorial structures (medulla, pons, cerebellum,
brain stem, periqual grey, reticular and red nucleus, mammillary
bodies) to specify boundary conditions of the FEM; and a label
for the entorhinal area (ERA) because of its implication in AD.
Some of these labels are illustrated in Fig. 1.

B. Meshing and Labeling

The three-dimensional (3-D) meshing of brain structures is
a challenging task, especially because of the convoluted nature
of the grey/CSF and white/CSF boundaries, and because partial
volume effects introduce ambiguity. Our approach is to mesh
the entire contents of the cranium (including CSF), and subse-
quently label the mesh to assign appropriate material properties
to each element. This strategy allows the modelling of a dif-
ferent behaviour for each tissue compartment and/or anatomical
structure.

Therefore, the first phase consists of the generation of a
surface mesh from the intracranial surface using the classical
marching cubes [43] algorithm, followed by some postpro-
cessing steps (decimation, smoothing, and selection of biggest
connected component) to guarantee the creation of a continuous
surface brain mesh. A volume (3-D) finite-element (four-noded
tetrahedra) mesh was then obtained from the intracranial mesh
surface using the NETGEN3 openSource software [44]. The
final step is the labelling of the 3-D mesh using the labelled
voxel atlas.

NETGEN is based on the combination of the Delaunay algo-
rithm with a rule-based advancing front method. It also allows

3http://www.hpfem.jku.at/netgen/

TABLE I
ELASTIC MATERIAL PROPERTIES (YOUNG’S MODULUS E � 10 NM

AND POISSON’S RATIO �) AND NUMBER OF MESH ELEMENTS OF EACH

COMPARTMENT. MTL: MEDIAL TEMPORAL LOBE

adaptive meshing, generating elements with different sizes de-
pending on their distance to surfaces of high curvature, which
is desirable in our application since high precision is required
in the cortex. We generated a tetrahedral mesh with very fine
resolution (163 765 nodes and 868 404 elements, with 61 132
surface elements), which allows a high number of elements for
the most critical structures or regions such as the ERA, the hip-
pocampi, or the interface between the grey and white matter.
The number of tetrahedra corresponding to each tissue label is
listed in Table I 4. The geometrical quality of the elements of the
mesh is critical for the convergence and stability of the FEM so-
lution, as poor quality elements can lead to poorly conditioned
stiffness matrices [45]. We have computed a widely used crite-
rion of element quality that is defined as the ratio between the
radius of the inscribed circle and the longest edge in
the tetrahedron

(1)

This criterion is negative in folded elements and equal to 1
in case of optimal quality, i.e., an equilateral tetrahedron. In
Section VII-B, we will use this criterion to assess the quality of
the generated mesh, shown in Fig. 1, and some warped meshes.

4The remaining tetrahedra were assigned to the background class
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The obtained values of assure good behavior of the FEM
solver when using the generated volumetric mesh.

The mesh labelling step assigns a set of particular biomechan-
ical properties to each tetrahedron. Label information is mapped
from the reference labelled image into the mesh through a ras-
terization procedure [46]. This computes the whole set of voxels
that intersects with each mesh element, and then computes the
percentage/probability of each label for each tetrahedron within
the intersection set; the most common tissue type is assigned
to the element. Fig. 1 shows some slices of the grey-level ver-
sion of the MNI atlas and the corresponding rasterized image
obtained from the volumetric mesh. In order to reduce the im-
pact of the discretization of the mesh, we apply a partial volume
tissue model to each tetrahedron in the FEM solver, as detailed
in Section III-C.

III. FINITE-ELEMENT DEFORMATION MODEL

The use of FEM for biomechanical modelling is an active
field of research, being a valuable tool in clinical applications
such as image-guided surgery. It offers the possibility of pre-
dicting mechanical or physical deformations through the simu-
lation of anatomical structures and their interactions, as well as
the estimation of material properties from observations. FEM
have been applied in the modelling of different anatomical struc-
tures, involving liver [47]–[49], heart [46], [50], or mammog-
raphy data [40], [51]–[54]. With respect to brain modelling,
FEM have been used for image-guided surgery [55]–[58] or
interventional [59], [60] procedures, registration systems [61],
tumor growth simulation [62], or the estimation of brain tissue
biomechanical properties [63], amongst other applications.

In the following sections, we present the FEM model we have
developed, as well as the definition of the boundary conditions
and the biomechanical tissue properties. Finally, we describe the
method for the estimation of the thermal coefficients that will
guide the FEM solver.

A. Model

We use a thermoelastic model of soft tissue deformation to
simulate the change in brain structure caused by degenerative
diseases. The deformation model employs a linear elastic finite-
element method based on the TOAST package [64], which is
freely available.5 The implementation of the FEM model fol-
lows a standard approach (see, for example, [65]), whereby each
tetrahedral mesh element is assigned a set of elastic material
properties represented by an elasticity matrix . In the case of
isotropic elastic deformations, is symmetric and can be ex-
pressed in terms of two parameters, usually given as Young’s
modulus and Poisson’s ratio , or equivalently by the Lamé
modulus and shear modulus , defined as

(2)

The elastic coefficients are assumed time-invariant. The
deformation of the mesh is induced by assigning an isotropic
thermal expansion coefficient to each element , and simu-
lating a global temperature change . The resulting isotropic

5http://www.medphys.ucl.ac.uk/martins/toast/index.html.

thermal expansion enters the description of elastic deformation
in the form of an initial element strain

(3)

where the relation between stresses and strains is given by

(4)

Assembling all element contributions of the mesh leads to the
linear system

(5)

with stiffness matrix . In an -noded element, is a
strain displacement matrix , and

(6)

contains the volume forces arising from the initial thermal
strain, combines all other surface and volume force terms,

defines explicit displacements, and is the vector of nodal
displacements.

B. Boundary Conditions and Mechanical Properties of Brain
Tissue

The surface of the mesh was assumed to coincide with the
inner surface of the skull, and homogeneous Dirichlet boundary
conditions were introduced using a Payne–Irons (“big spring”)
method to suppress the displacements of boundary nodes. The
same strategy was applied to the mesh nodes corresponding to
the subtentorial structures since atrophy induced by dementia is
in general localized in the supratentorial area.

There is not a consensus on the optimal Young’s modulus
and Poisson’s ratio of the different brain tissues, as demon-
strated in the reviews of Kruse et al. [66] and Hagemann et
al. [61]. Nevertheless, the choice of the elastic properties is
not critical in the model presented here, because the boundary
conditions enforce a constant global volume, while the rela-
tive changes in tissue region volumes are driven by the ratio
of thermal coefficients. Furthermore, the mechanical proper-
ties of brain tissue are directly relevant to how the brain re-
sponds to an external force but are much less relevant to the re-
sponse of the brain to diffuse cell damage and death that results
in active structural readjustment. Therefore, we have adopted
the shear modulus values proposed by McCracken et al. [67],
which have been estimated using magnetic resonance elastog-
raphy imaging: 12 kPa for white matter and 8 kPa for grey
matter. For the Poisson’s ratio, we have chosen a value of 0.45
for each brain tissue. Even if the human brain is expected to be
more incompressible than that, it has been shown that the choice
of an appropriate set of boundary conditions is more critical than
the exact value of the material properties [68]. Using (2) and
the values of the Poisson’s ratio and the shear modulus stated
above, we obtain a Young’s modulus of 34.8 kPa for the white
matter and 23.2 kPa for the grey matter. If we consider that the
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Fig. 2. Relation between thermal coefficients and desired volume change. Left: Graph representing the percentage of GM element change when varying the
thermal coefficients of the GM and WM (TCgm and TCwm, respectively). Right: Graph illustrating the good agreement between the desired and the obtained
volume change of GM and WM.

hippocampi, the entorhinal area, and the subtentorial structures
are composed of an equal percentage of grey and white matter,
then their material properties are the average of the ones corre-
sponding to the grey and white matter . With
respect to the CSF, we assume it to be a very soft and compress-
ible tissue, with low Young’s modulus and Poisson’s ratio. All
the values used in this work are summarized in Table I.

C. Thermal Coefficient Computation

Given a segmentation of domain into tissue types or
anatomical structures , , , we assume
the thermal coefficient to be constant within each region ,
so that is expressed in a piecewise constant basis, ,

. Once the material properties have been defined, we need
to estimate the thermal coefficients that will provide a mesh
deformation consistent with the desired volume change that we
want to apply to each tissue segment . These thermal coeffi-
cients will generate a deformation field that will be applied to the
original mesh, generating a displaced mesh. Subsequently, we
integrate the differences in element volumes between the orig-
inal and displaced meshes over each region in order to com-
pute the obtained volume change. This obtained volume change
will provide the ground-truth information needed for validation.

Initially, the relation between the and volume changes
was obtained empirically, i.e., by running the FEM solver

a sufficient number of times with different values of to fit
a linear model to the resulting volume changes. For instance,
if we want to explicitly change the volumes of the grey and
white matter, their corresponding values of will be estimated,
given a volume change, and , by the following
equations:

(7)

where the and the parameters will be estimated by the fitting
procedure. The assumption of linearity has been shown to be ap-
propriate, as can be seen in Fig. 2. In this figure, we also show
the differences between the desired and the obtained volume

change for a set of 30 simulations (mean difference of 0.35%
0.41 and 0.14% 0.08 for GM and WM, respectively) con-

firming the appropriateness of the linear model.
As pointed out in Section II-B, we may make use of the in-

formation provided by the rasterization approach about the per-
centages of each tissue on each mesh element in order to reduce
the effect of the mesh discretization. Hence, for each mesh el-
ement, the thermal coefficient will be a partial volume-
weighted average of the region thermal coefficients contributing
to the element

(8)

where is the fractional volume contribution of region to
element .

This method of recovering the thermal coefficients for a given
set of target region volume changes can be generalized for an
arbitrary number of regions by applying a linear inversion tech-
nique. The relationship between changes of and in re-
gions and is expressed by the Jacobian matrix

(9)

which we compute with a finite difference scheme by explicitly
perturbing each . Now we form the linear system

(10)

Note that due to the boundary conditions, the volume changes
on the right-hand side of (10) are not independent, because

is required. Likewise, the thermal coefficients on
the left are only determined up to an arbitrary additive term,
which can be taken into account by fixing one of the coeffi-
cients, e.g., . The resulting linear system is, therefore,
quadratic of dimension and can be solved by
a standard LU decomposition.
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IV. WARPING

The FEM solution has produced a set of displacement vectors
defined at each node of the volumetric mesh.

In order to simulate atrophy in the atlas image, we need to use
interpolation techniques to generate a displacement field at each
voxel of the image. For doing so, we can weight the displace-
ment vectors of the nodes in the element containing a given
voxel by the element linear shape function [40], [69]

(11)

Using the FEM shape interpolation defined in (11) above,
a dense voxel displacement within the volumetric mesh can
be calculated, and the new image intensities can be interpo-
lated using a truncated sinc interpolation kernel [70]. We have
adopted a different interpolation strategy outside the mesh,
where no deformation information is available from the FEM
model, and at mesh boundaries in order to avoid intensity
discontinuities due to decimation and smoothing steps in the
mesh generation stage. Here, we employ a scattered data inter-
polation technique [71] based on multilevel -splines, in order
to blend the FEM shape interpolated displacements within the
mesh and at the mesh boundary with smooth, cubic B-spline
interpolants at outside locations. Five hierarchical levels of
B-splines with a decreasing grid spacing were used (20, 10, 5,
2.5, and 1.25 mm).

Using such an interpolation scheme, we can warp the grey-
level version of the MNI atlas without noise using the dense
displacement field generated by the FEM solver. Finally, we add
Rician distributed noise (with an amplitude equal to 2% of the
maximum intensity value of the image) to the atrophy simulated
image.

V. EXAMPLES OF SIMULATIONS

The proposed methodology has been designed to make it
possible to simulate many neurodegenerative diseases. The
illustrative examples shown in this section are focused on AD,
as it is the most common cause of dementia. In AD, the early
and most severely affected structures are in the medial temporal
lobe, such as the entorhinal cortex (ERC) and the hippocampus
[25], [72]–[79], followed by paralimbic cortical areas and
reaching the neocortex at the later stages the disease [5], [25],
[80]–[82]. From this topographic progression of the pathology,
we expect a strong correlation of the regional measures based
on hippocampus and ERC with the conversion from normal
to mild cognitive impairment (MCI) and global measures of
hemispheric atrophy rates, whole brain and ventricle (and
temporal horn) strongly associated with clinical progression
at later stages of the disease [83]. Therefore, medial temporal
structures seem an obvious choice for biomarkers due to their
early pathologic involvement in the AD process, but changes in
whole-brain and ventricular volume can give complementary
data by providing a summation of the widely distributed cere-
bral volume loss that are ongoing by the time an individual is
even mildly affected [83]–[85].

Fig. 3. Results of the cross-sectional simulation example. Superimposition of
the MNI atlas with results obtained from the mass-univariate voxel-wise two-
sample t-test.

Based on these conclusions, we have used the proposed
methodology to generate two sets of simulated data. As pointed
out above, the main goal of this work is the generation of
ground-truth data for the validation of the existing atrophy
measurement methods. In Section I, we classified such tech-
niques into cross-sectional and longitudinal designed ones.
Hence, we present one illustrative example for each of these
categories.

A. Cross-Sectional Simulation

The cross-sectional simulation consisted of the generation
of two cohorts of subjects from the MNI-ICBM atlas mesh.
The first one represents a group of 10 controls, in which the
FEM solver induces an average reduction in the brain of 0.49%
( 0.02). Accordingly, the second cohort is composed of 10 AD
patients, in which an average reduction in the brain of 2.21%
( 0.11) is applied. These values are inspired by the review of
MR-based measures of atrophy in Preboske et al. [86].

We have applied the SIENAX [28] technique to these two
groups of subjects, using the freely available software,6 devel-
oped at the FMRIB Analysis Group, Department of Clinical
Neurology, Oxford, U.K. We have used the default parameters
of SIENAX and the study aimed to detect differences in brain
tissue between the two simulated cohorts. SIENAX results on
brain volume change are quite similar to the ground truth ones,
knowing that this technique has an estimated 0.5%–1% brain
volume accuracy [28]: an average reduction of 0.62% ( 0.05)
for controls, and an average reduction of 2.32% ( 0.1) for
patients.

Since the cohorts are already spatially normalized, the dif-
ferences between them can be seen clearly in an image formed
by subtracting one group’s mean image from the other’s. To
investigate the significance of these differences, we performed
a mass-univariate voxel-wise two-sample -test. Fig. 3 shows
the superimposition of the MNI atlas image with the negative
base-10 logarithm of each voxel’s -value from this test. As ex-
pected, the most significant values are located around the lateral
ventricles and the cortical GM.

B. Longitudinal Simulation

Besides the quantification of atrophy, it is also critical to iden-
tify the spatial pattern of the disease, especially to distinguish
between different types of dementia. Therefore, the longitudinal
example is based on the generation of a set of simulated images
approximately mimicking the distribution of regional change in

6http://www.fmrib.ox.ac.uk/fsl/
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TABLE II
VOLUME CHANGES (% WITH RESPECT TO THE BASELINE) SIMULATED IN

THE LONGITUDINAL EXAMPLE. MTL: MEDIAL TEMPORAL LOBE. MOST

SIGNIFICANT VOLUME CHANGES IN THE AD PATIENTS IN EACH

TIMEPOINT ARE MARKED IN BOLD

AD according to the severity of the disease. Three different at-
rophy simulated images are generated: in the first one , only
changes in the hippocampi and the entorhinal area are applied;
the second image also includes grey matter changes in the
medial temporal lobe and an expansion of the lateral ventricles;
finally, a global reduction of the whole brain is applied to gen-
erate the third simulated image . In addition, we have gener-
ated a corresponding set of simulated images at the three time-
points representing volume change induced by normal aging.
We chose a range of values (see Table II) which included a
range of cerebral volume losses, as a percentage of baseline,
that is consistent with published rates of atrophy and study du-
rations [83], [87] of 6–24 months. Fig. 4 shows the difference
images between the normal aging and the AD simulated images
at each timepoint, demonstrating the potential of the proposed
methodology.

VI. SIMULATION OF ACQUISITION ARTEFACTS

The presence of artefacts in the MR scans due to imperfec-
tions during the acquisition procedure may have a strong in-
fluence on the performance of the atrophy measurement tech-
niques. Therefore, we have developed methods to simulate ac-
quisition artefacts, making the generated ground-truth data more
realistic. In this work, we deal with two of the most common
causes of acquisition artefacts, a rotational motion during the
scan, and a pulsatile motion.

A. Rotational Motion

Rotational motion during a scan causes inconsistencies in the
-space signal that result in blurring and ghosting in the image

domain. The method we developed to simulate rotational mo-
tion was as follows.

A motion-free 3-D image volume was converted into a
complex image by treating the modulus image as the real
part, and setting the imaginary component to zero. This com-
plex image was then rotated by 5 about an axis through the
internal auditory meatus, simulating a slight nodding of the
patient during the scan. Bicubic interpolation was used in the
rotation, and voxels entering the volume were assigned the

value zero. The original and rotated images were then both
Fourier-transformed into -space. A motion-corrupted -space
was subsequently generated by assembling portions of the

-spaces corresponding to the unrotated and rotated images.
The motion-corrupted -space was then transformed back to
the image domain to give the motion-corrupted volume. The

-space samples were combined as sagittal planes representing
a sagittal MR acquisition orientation.

The appearance of the motion artefacts is influenced by which
region (its distance to the centre of the -space) of -space is
being sampled as the motion takes place, and whether there is
a single step motion or a periodic motion. Our technique allows
complete freedom in the selection of the time of the motion in the
scan, and for the examples in this paper, we simulated step mo-
tion by combining the first 57% of the unrotated -space, with
43% of the rotated -space. We simulated the motion just after
half way through the acquisition as the artefact is more noticeable
the nearer to the centre of -space it occurs. Periodic motion, rep-
resenting a repeated nodding of the head, was simulated by gen-
erating the motion-corrupted -space from portions of the unro-
tated and rotated -space, alternating between the two at 44%,
48%, 52%, and 56%. The motion-corrupted -space was trans-
formed back to the image domain, and a zero-mean with stan-
dard deviation of five Gaussian noise was added independently
to the real and imaginary components before generating modulus
image for subsequent analysis. The top row of Fig. 5 shows an
example of simulated periodic rotational motion.

B. Pulsatile Motion

Another important artefact in MR images is pulsatile mo-
tion, which typically leads to streaks across the image in the
slow-phase encoding direction. These artefacts arise from major
blood vessels in the field of view, such as the carotid artery
where it passes through the carotid siphon, and result from a
signal in the vessel that varies from shot to shot during the acqui-
sition. Simulated pulsatile motion artefacts for array coils were
added to the simulated data as follows.

The 3-D modulus images were converted to a complex image
as described above, and four different coil views were obtained
by multiplying the image by four separate coil sensitivity pro-
files. Because the pulsatility artefact is predominantly in the
slow-phase encode direction, each plane of the -space was
treated as being acquired instantaneously (contrast being largely
determined by the acquisition of the center portion of -space)
and 1.73 s apart from the next. A cylinder corresponding to
the carotid artery was manually delineated from the image, and
the intensity of this modulated according to a literature-based
model of the flow in the carotid artery [88]. For each shot in the
slow-phase encode direction, a different image was simulated by
modulating the intensity of the carotid signal in the delineated
cylinder. These images were transformed into the -space, and
one -space plane from each image was combined to form a
pulsatile-motion corrupted -space based on an estimated heart
rate of 60 bpm. Because this is a one-dimensional motion, it was
implemented just for the lines containing the carotid, rather than
the entire image, in order to reduce computational cost. The re-
sulting image, as can be seen in Fig. 5, has a simulated flow
artefact running right to left.
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Fig. 4. Results of the longitudinal simulation example. Axial (top), coronal (middle), and sagittal (bottom) slices of the normal aging, AD simulated, and their
difference (left, center, and right in each subset of three images, respectively) images at each timepoint. (a) t1. (b) t2. (c) t3.

Fig. 5. Simulation of acquisition artefacts. Top: Original atrophy simulated
image (left), simulation of periodic rotational motion (center), and the differ-
ence image (right) between them. Bottom: Atrophy simulated image with array
coil noise (left), simulation of pulsatile motion (center), and the difference image
(right) between them.

VII. VISUAL CLASSIFICATION PROTOCOL

The evaluation of the degree of realism of a simulated image
is quite a challenging task in our application. However, an ex-
periment was designed in which a visual classification protocol
was used by experts to rate real and simulated MRI data of con-
trols and patients with atrophy. We could then study whether
experts consistently rate real and simulated data in a different
way. The experiment used two matched cohorts of 20 controls
and 20 mild AD subjects, together with nine atrophy simulated
images. A mesh warping technique was employed to put the vol-
umetric mesh presented in Section II into the anatomical space
of nine of the controls, thus generating nine control-specific
meshes. Thereafter, they were introduced into the FEM solver,
together with volumetric difference estimates (whole brain, hip-
pocampus, lateral ventricles) between both cohorts that have
been previously computed using manual tracing techniques. The
output of the FEM solver was a set of deformations that were ap-
plied to the control images to generate a group of atrophy simu-
lated images equivalent to the cohort of mild AD subjects. The

TABLE III
DEMOGRAPHICS OF THE SUBJECTS INVOLVED IN THE VISUAL CLASSIFICATION

PROTOCOL. MEAN �STD. M: MALES; F: FEMALES

three sets of images, including real and simulated data, were
then introduced to the visual protocol.

A. Database Characteristics, Image Acquisition, and
Preprocessing

Twenty healthy elderly controls and 20 individuals with a di-
agnosis of probable AD [89] were included in the study (see
Table III). These subjects were enrolled in a longitudinal re-
search project at the Dementia Research Centre, Institute of
Neurology, University College London, U.K., and underwent
serial MRI, clinical, and neuropsychological assessment over a
period of at least one year. A subset of nine controls (matched
with the full group for age, gender, and brain and hippocampal
volumes) was selected for the simulated atrophy model.

T1-weighted volumetric MR images were acquired on a 1.5
Tesla Signa unit (General Electric, Milwaukee) using a 256
256 matrix to provide 124 contiguous 1.5-mm coronal slices
through the head (acquisition parameters: time to repeat, 15 ms;
time to echo, 5.4 ms; flip angle 15 ; field of view 24 24 cm).
Whole brain and hippocampal segmentations were performed
on all scans using the MIDAS software [42] according to previ-
ously described protocols [90]. Volumes are given in Table III.

B. Mesh Warping

Mesh-warping (MW) [91], [92] (sometimes referred to as
mesh-matching [93]) is a generic technology for individualizing
a reference mesh to a new subject using image registration. It
can be divided into three main steps: 1) reference mesh gener-
ation; 2) image registration; 3) mesh transformation. Here, the
aim is to transform the MNI-ICBM atlas mesh to match an indi-
vidual brain. Therefore, the registration step must compute the
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TABLE IV
FITTING AND GEOMETRIC (PERCENT) QUALITY. RO: REGISTRATION OVERLAPS; MW: MESH-WARPING

Fig. 6. Mesh warping procedure. Left: Superimposition of the mesh with some slices of the grey-level version of the MNI atlas after affine (top) and fluid (bottom)
MW. Right: Slices of the control grey-level image (top) and the rasterization image generated from the labelled mesh after affine (middle) and fluid (bottom) MW.

optimal geometrical transformation between each control image
and the grey-level version of the atlas.

First, each grey-level image of the controls was registered
to the atlas using a 12 degrees of freedom affine registration
[94] with normalized mutual information as the image similarity
measure. For MW, it is essential to avoid folding in the defor-
mation fields (nondiffeomorphic transformations) applied to the
meshes, in order to preserve the geometrical quality of their el-
ements and ensure the convergence and numerical stability of
subsequent finite element analysis. In consequence, we applied
a fluid registration technique [95] to determine a diffeomorphic
transformation. The resulting transformation was applied to the
MNI-ICBM atlas mesh, creating a set of meshes specific to the
control subjects.

Geometric and fitting quality of the warped meshes were
used to evaluate the MW procedure. For the geometric quality,
we used the criterion described in Section II-B. For the fitting
quality, first, a simple check of the registration quality was

performed by computing the classical Jaccard overlap measure
[96] of semiautomatically obtained brain-masks before and
after each registration stage. Overlap values (mean STD) are
shown in Table IV. We have also computed the overlaps be-
tween the brain-masks and the rasterization (see Section II-B)
of the meshes after MW. Results shown in Table IV 7 prove a
good performance of the MW technique in terms of geometric
and fitting quality meeting the requirements of the FEM solver.
Fig. 6 shows an illustrative example of the generation of a
control-specific mesh.

C. Visual Classification Protocol

Scans from the 20 controls, 20 individuals with AD, and the
nine simulated atrophy scans were presented in a random order

7Note that the registration overlap (RO) measure of the original image is not
equal to 1 since the ground-truth was the brain segmentation of the MNI atlas ob-
tained with a semiautomated technique [42], which was slightly different from
the brain parcellation given by the MNI labels.
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TABLE V
ATROPHY RATING OF THE REAL AND SIMULATED DATA

to three neurologists independently. The assessors were blinded
to any subject-specific information, but were informed of the
mean age of the control and AD groups. They were aware of
the categories of scans, but not their distribution. The 3-D volu-
metric scans were viewed using the MIDAS software [42], and
the assessor was able to examine the image in the coronal, axial,
or sagittal planes. The neurologists were asked to classify each
scan on a five point scale, with a score of one being definite
control, and a score of five being definite AD. Sensitivity and
specificity for the discrimination of the true AD cases from the
controls were calculated. A kappa score was calculated to assess
inter-rater agreement for all scans.

D. Results

The mean sensitivity and specificity for visual classification
of true AD from control scans was 90% and 77%, respectively.
These values are similar to other published figures [97]. The
inter-rater agreement was moderate, with a kappa score of 0.52.

The mean score for each scan category is given in Table V.
More than half of the simulated atrophy scans were classified
as AD or with a score closer to the AD (5) than to the control
(1) group for each assessor. The mean rating for the simulated
atrophy scans was somewhere between the definite control score
and the definite AD one.

VIII. DISCUSSION

In this paper, we have used expert clinical knowledge of the
rate and spatial distribution of atrophy in dementia to create
a phenomenological model of the appearance of atrophy in
MRI. The model includes structural remodelling concomitant
with atrophy and can include realistic simulation of imaging
artefacts.

The mesh generation stage is critical for the good perfor-
mance of the atrophy simulation methodology. The choice
of linear tetrahedral elements allowed the computation of
analytical integrands, facilitating the meshing of the structures
[68] since a smaller number of elements is required to obtain a
smooth surface. Some authors [55], [57] claim that hexahedral
or higher order elements are needed to avoid locking effects and
to permit the computation of large displacements, when mod-
elling almost incompressible material. Nevertheless, since we
worked with displacements, it has been proven that the use of
tetrahedral elements does not necessarily involve much error in
the displacement estimation [68], [98]. It is obvious that meshes
with higher resolution (i.e., a higher amount of elements) would
improve the general behaviour of the procedure, but the current
resolution has proven to be sufficient to obtain satisfactory
results. The introduction of additional labels into the generated
volumetric mesh such as the inclusion of hemispheric separa-
tion or other anatomical structures will have a strong impact
on the ability of the technique to simulate different types of

dementia. Furthermore, the use of disease-specific atlases, or
those based on elderly individuals, would make the adaptation
to a particular patient easier than when using the MNI-ICBM
atlas (generated from a young individual).

Thermoelasticity was found to be a convenient way of in-
ducing structural volume change in our application. However,
it should be noted that the thermal expansion coefficient in our
model does not have a physical meaning beyond introducing
an initial stress term that leads to a volume displacement field.
This avoids the need for more accurate models of tissue thermal
distributions such as the bioheat equation [99]. In consequence,
the choice of the elastic properties is not critical in the model
presented here, because the boundary conditions enforce a con-
stant global volume, while the relative changes in tissue re-
gion volumes are driven by the ratio of thermal coefficients.
Taking this into account, we have used a deformation model
based on a linear elastic finite-element method. Although it has
been demonstrated that brain tissue is a nonlinear viscoelastic
material [68], and that nonlinear models are required to simulate
large deformations, in this work, we considered structural dis-
placements induced by atrophy that are small in relation to the
total brain volume, so that the use of a linear model is justified.

In Section VI, we have presented some results on the sim-
ulation of artefacts in the MR scans due to acquisition imper-
fections. This will allow the evaluation of atrophy measurement
techniques, in particular the longitudinal-based ones, with re-
spect to these situations. It is especially relevant to identify the
degree of robustness of the registration methods involved in at-
rophy measurements in the presence of acquisition artefacts,
where image analysis is the principle reason for acquiring scans,
for instance, as part of large clinical trials. Therefore, a proper
understanding of the sensitivity of the algorithms to artefacts
will reduce the number of wasted scans and/or of rescans nec-
essary. Furthermore, the increasing use of 3-T MR scanners,
which produce images with a higher presence of artefacts, will
demand the development of image processing techniques which
are tolerant to these artefacts, to allow longitudinal studies with
images provided by different acquisition protocols or scanners.

The cross-sectional and longitudinal cases described in
Section V mimic the differences between normal aging con-
trols and AD patients. The proposed methodology could be
applied to simulate other types of dementia or degenerative
diseases in brain structures, including different topological
patterns of atrophy due to frontotemporal dementia in which
changes may be very focal in the frontal and temporal lobes
changes due to white matter diseases such as vascular disease
or multiple sclerosis, changes due to conditions of the CSF
such as hydrocephalus and lumbar puncture. The longitudinal
example has shown the ability of the procedure to simulate the
temporal progression of atrophy changes. This is crucial since
the regional distribution of cellular damage due to different
pathologies leads to different spatial patterns of atrophy in
different types of dementia; many of the current methods fail
to separate patients with one type of dementia from those
with other disorders. The cross-sectional example is currently
limited by the fact that we have just modelled local changes
and the topological distribution of the structures is then the
same for all simulated scans, which is not the case with real
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scans. Actually, atrophy may impair the spatial registration
step applied in the majority of the proposed atrophy measure-
ment methods, and this problem cannot be studied with the
current simulations. Future work will combine the atrophy
simulation procedure with known global misregistrations or
with diffeomorphic transformations obtained either from the
mesh warping procedure or by exploiting recent research on the
generation of realistic high-dimensional deformations [100].

The geometric and fitting quality of the warped meshes after
applying the MW procedure detailed in Section VII-B proved a
good performance of the adaptation of the reference atlas-based
mesh into the subjects. Nevertheless, an ad hoc refinement pro-
cedure, either in terms of remeshing or in terms of element rela-
belling with information provided by a segmentation procedure
applied to the subject image, could considerably improve the
appropriateness of the subject-specific meshes.

The simulated scans were not consistently classified as AD,
but our results show that even true AD cases may be misidenti-
fied in one in 10 cases. This may be due to the large inter-subject
variation which exists when these subject groups are compared
cross-sectionally. The control group were elderly, and brain at-
rophy due to normal aging may create overlap when visual clas-
sification of MR scans is used. Future work to examine how well
the atrophy model performs in simulating longitudinal atrophy
would be useful to reduce the effect of this large inter-subject
variation. Nevertheless, the visual classification protocol sug-
gests that the model produced AD-simulated scans leading to
the same trend in group separation/classification between con-
trols and AD patients in a cross-sectional study used by expert
observers than when using real data. From this observation, we
can conclude that an expert may not always be able to discern
between the simulated scans and real data, thus implying that
our simulation produces results with reasonable degree of re-
alism. In on-going work, we plan to perfom a more detailed
quantitative validation of the realism of the simulated images
in the future.

In summary, the immediate value of the generated simulated
data is to provide gold standard data which can be used to test
and validate atrophy measurement techniques commonly used
in the study of the neurodegenerative diseases mentioned above.
A broader short-term application is the assessment of nonrigid
registration and segmentation techniques where it is difficult to
validate using anything but the most contrived exemplar data-
sets. For doing so, we plan to generate a large cohort of brain
images with known, physically and clinically plausible, change
and make this large database of images freely available to in-
terested groups worldwide through the IXI (Information eX-
traction from Images) website, a U.K. e-Science core-funded
project aimed at using image analysis to generate image meta-
data information about the images and the generic applicability
of this technology (grid-enabled image registration and segmen-
tation for drug discovery, medical research, and decision sup-
port in healthcare) [101], [102]. This could form the basis of a
multisite evaluation in a similar way to previous studies such as
the comparison of registration methods published by West et al.
[103].

8http://www.ixi.org.uk

IX. CONCLUSION

We have proposed a method providing valuable ground-truth
data for the testing and objective validation of atrophy measure-
ment techniques. In the existing literature, validation has not
been done in a satisfactory way since standardized test datasets
with known volume changes are not available. Our technique
is based on the combination of expert knowledge of clinical
changes in brain with finite-element methods, including mod-
elling and solver techniques. Such combination has proven to
generate sufficiently realistic simulated MR brain images with
local and/or global atrophy, to guide the assessment of atrophy
measurement techniques. Future work will focus on the genera-
tion and dissemination of several cohorts of data simulating the
pattern of changes induced in the human brain by different types
of dementia such as fronto-temporal dementia, vascular disease,
or multiple sclerosis.
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