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Abstract

This paper presents a novel and robust technique for group-wise registration of point sets

with unknown correspondence. We begin by defining a Havrda-Charvát (HC) entropy valid

for cumulative distribution functions (CDFs) which we dub the HC Cumulative Residual En-

tropy (HC-CRE). Based on this definition, we propose a new measure called the CDF-HC diver-

gence which is used to quantify the dis-similarity between CDFs estimated from each point-set

in the given population of point sets. This CDF-HC divergence generalizes the CDF based

Jensen-Shannon (CDF-JS) divergence introduced earlier in the literature, but is much simpler

in implementation and computationally more efficient.

A closed-form formula for the analytic gradient of the cost function with respect to the non-

rigid registration parameters has been derived, which is conducive for efficient quasi-Newton

optimization. Our CDF-HC algorithm is especially useful for unbiased point-set atlas construc-

tion and can do so without the need to establish correspondences. Mathematical analysis and

experimental results indicate that this CDF-HC registration algorithm outperforms the previ-

ous group-wise point-set registration algorithms in terms of efficiency, accuracy and robustness.

1 Introduction

Point-set registration is a widely encountered problem in several fields namely, computer vision,

computer graphics, medical imaging and pattern recognition. In computer vision, it is encoun-

tered in image mosaicing to form panoramas and in computer graphics it is required for fusing

3D range data sets obtained from different vantage points to form a 3D model. In medical imag-

ing, registration is necessary to match landmarks in volume (MRI, CT etc.) scans for the purposes
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of disease diagnosis or in the construction of image/shape atlases. Finally, in pattern recognition,

point pattern matching is used to correlate feature clusters to assess the similarity between them.

The key problem in point-set registration regardless of the dimension in which the points are

embedded in is to estimate the transformation between the coordinates used to represent the

points in each set. The transformation may be characterized as being linear or nonlinear, pa-

rameterized or non-parameterized. The literature has many techniques to solve for the linear and

nonlinear transformations required to register the point sets. Below, we briefly discuss some of

the prominent methods and then establish motivation for the work reported here.

The prior work in point-set registration can be traced back to Baird’s effort in 1985 [1], wherein

a technique was proposed for pair-wise shape registration under a similarity transformation. He

constructed a linear programming model to solve for the registration parameters and made effec-

tive use of the feasibility-testing algorithms, such as the Simplex algorithm and the Soviet ellipsoid

algorithm, to allow for a systematic search for the correspondences. Theoretical analysis indicated

that the runtime of the algorithm is asymptotically quadratic in the number of points n, but in

practice it is linear in n for n < 100. However, rigid registration is too restrictive a requirement.

Since then, abundant research on pair-wise non-rigid point-set registration can be found in litera-

ture. For instance, Belongie et al. [2] aimed at non-rigidly registering two shapes represented by

points using shape contexts, by first solving for the correspondences. Their method is more tuned

to shape indexing than registration. Chui and Rangarajan [3] proposed a method that jointly re-

covers the correspondence and the non-rigid registration between two point sets via deterministic

annealing and softassign. Their work requires outlier rejection parameters to be specified and

the use of deterministic annealing frequently results in a slow to converge algorithm in practice.

Note that these two previously discussed non-rigid registration methods employ non-rigid spatial

mappings, particularly thin-plate splines (TPSs) [5, 7] as the deformation model. In recent work,

Glaunes et al. [4] attempt solving the point-set matching problem in a diffeomorphism setting.

This successfully overcomes the drawbacks such as local folds and reflections induced by spline

based models as in [6]. However, it requires a large amount of computation in 3D due to the need

to compute a spatial integral. Furthermore, the method has not been extended to the group-wise

setting.

Alternatively, there exists a class of methods that achieves more robustness with unknown

correspondences in the presence of outliers. The general idea for this class of methods is to rep-

resent each point-set by a probability density function and compute the dis-similarity between
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them using an information theoretic measure. This class of methods is closely related to our work

reported here. The most illustrative example is the method proposed in [8] by Wang et al., who

attempted minimizing the relative entropy between two distributions estimated from the point

sets w.r.t. the registration parameters, so as to register the two point sets. The main drawback of

this approach is that only rigid pair-wise registration problem is addressed. Besides this, Tsin and

Kanade [9] proposed a Kernel Correlation (KC) based point-set registration algorithm by maxi-

mizing the kernel correlation cost function over the transformation parameters, where the cost

function is proportional to the correlation of the two kernel densities estimated. Jian and Vemuri

in [10] modeled each of the point sets as a Gaussian mixture model (GMM) and minimized the L2

distance over the space of transformation parameters, yielding the desired transformation. While

the method has attractive speed and robustness properties, the L2 distance is not a divergence

measure and the overlay of the point-sets is not modeled, making it difficult to extend this to the

unbiased registration of multiple point-sets.

To summarize, in all the techniques discussed thus far, one of the two given point sets is fixed

as a reference which definitely leads to a bias in the deformation toward the chosen data set.

Moreover, all the point-set registration methods mentioned above are designed to achieve pair-

wise point-set registration, and are not easily generalizable to achieve group-wise registration

of multiple point sets. Considering group-wise alignment algorithms, most of the efforts were

dedicated to group-wise image registrations, i.e. constructing image atlas. For instance, in [11, 12,

13, 14], several non-rigid group-wise image registration methods were proposed. However, it is a

nontrivial task to extend these elegant techniques to group-wise point-set registration. Therefore,

we will not further discuss these image based methods in this paper and only focus on point-

set atlas construction instead. Before moving to group-wise point-set registration, we need to

briefly mention that rather than the feature point representation scheme, shape representation

using curves or surfaces [15, 16] has also received attention in the literature. Since statistical shape

analysis in curve/surface space is very difficult, methods using this representation have usually

resorted to computing means etc. of spline parameters (used for curve/surface representation)

[17] which is an extrinsic approach.

A 2D average shape modeling technique with automatic shape clustering and outlier detec-

tion was proposed by Duta et al. in [18]. Their matching method took the point sets extracted

from the shape contours as input and performed pair-wise registration of two point sets without

any requirements of setting the initial position/scale of the two objects or needing any manually
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tuned parameters. However, the Procrustes analysis procedure imposed in their model requires

the knowledge of correspondences. In [19], a group-wise point-set registration algorithm was

proposed as a generalization of [3], but this method has the same shortcomings as [3] in that an

explicit correspondence problem needs to be solved. Furthermore, the method is slow due to the

use of deterministic annealing. In the recent past, several research articles on group-wise point-set

registration have been published by Wang et al. [21, 20]. The main strength of their work is in

simultaneously group-wise registering the data and computing the mean atlas shape for multiple

unlabeled point sets without choosing any specific data set as a reference or solving for corre-

spondences, thus yielding an unbiased group-wise registration as well as an atlas. Their approach

is to minimize the JS divergence among the PDFs in [21] (or CDFs in [20]), estimated from the

given population of point sets, with TPSs adopted as the deformation model. The main claim

in [20] is that the CDF-JS is more immune to noise than PDF-JS because of the robustness prop-

erty of the CDF (being an integral measure). However, the main bottleneck in their CDF-based

work is the computational cost and the complexity in implementation, since they use cubic spline

Parzen windows to estimate the PDF and CDF. Hence, a numerical approximation is involved in

CDF estimation and extensive computation is involved in CDF entropy estimation since the en-

tropies and their derivatives are not available in closed form. Unlike their work, in this paper we

generalize the CDF-JS and develop an algorithm that is computationally much faster and more

simple and accurate from an implementation perspective (than the work in [20]), without losing

the inherent statistical robustness or accuracy in CDF based models. We will compare the com-

putational complexity of CDF-JS and CDF-HC in section 4 and show that CDF-HC tremendously

reduces the complexity compared to CDF-JS. We also demonstrate the robustness and accuracy of

the CDF-HC method by showing a set of experimental results on CDF-HC, CDF-JS and PDF-JS

methods.

The rest of the paper is organized as follows: In section 2, we present the definition of CDF-HC

divergence and introduce our point-set registration model. Section 3 contains of the description

of a novel technique for estimating the empirical CDF-HC which is used for the implementation

of our algorithm. The algorithm is then analyzed and validated experimentally in Section 4 and

we present concluding remarks in Section 5.
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2 Point Pattern Registration Model

In this section, we present the details of our proposed non-rigid point-set registration model. The

basic idea is to model each point-set by a survival function (complement of a cumulative distri-

bution function abbreviated as CDF), and then quantify the distance between these probability

distributions via an information-theoretic measure. This dis-similarity measure is then optimized

over the space of coordinate transformation parameters. We will begin by deriving this new dis-

similarity measure, namely the CDF-HC divergence.

2.1 Definition of CDF-HC divergence

The CDF-HC divergence in our paper parallels the definition of CDF-JS [20] and is defined over

the Havrda-Charvát (HC) Cumulative Residual Entropy (HC-CRE), the definition of which will

be given later. For convenience, we reproduce the definition of CRE, CDF-JS and Havrda Charvát

differential entropy (HC) here,

Definition 1 (CRE, [22] ): Let X be a random vector in Rd, the CRE of X is defined by

E(X) = −
∫

Rd
+

(P (|X| > λ) log P (|X| > λ))dλ (1)

where X = {x1, x2, . . . , xd}, λ = {λ1, λ2, . . . , λd}, and |X| > λ means |xi| > λi, Rd
+ = {xi ∈

Rd;xi ≥ 0; i ∈ {1, 2, . . . , d}}. .

Definition 2 (CDF-JS, [20] ): Given N cumulative probability distributions Pk, k ∈ {1, . . . , N},

the CDF-JS divergence of the set {Pk} is defined as

JS(P1, P2, . . . , PN ) = E(
∑

k

πkPk)−
∑

k

πkE(Pk) (2)

where 0 ≤ πk ≤ 1,
∑

k πk = 1, and E is the Cumulative Residual Entropy (CRE) defined in [22].

Definition 3 (HC, [23] ): The Havrda Charvát entropy is defined as

Hα(X) = −
n∑

i=1

(α− 1)−1(pα(xi)− p(xi)) (3)

where x1, . . . , xn are possible values for the random variable X , p denotes the probability mass

function of X and α is its inherent parameter.

Now we define HC-CRE by replacing the density function in Eqn. 3 with the survival function.

This definition parallels the Cumulative Residual Entropy E which is based on CDFs.
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Definition 4 (HC-CRE): Let X be a random vector in Rd: We define the HC-CRE of X by

EH(X) = −
∫

Rd
+

(α− 1)−1(Pα(|X| > λ)− P (|X| > λ))dλ (4)

where X , λ, and Rd
+ are defined as in Definition 1.

Note that we borrow the notation |X| > λ and its definition from [22], wherein |X| > λ is

taken to mean that |xi| > λi for each i. Since the CDF in 2D and above depends on the axis

directions, we appear to have a problem. However, our CDF-HC formulation is independent of

the axis definition, that is, any type of definition for |X| > λ out of all the 2d permutations is

equivalent to each other, because the estimated cumulative distribution functions are equivalent

after coordinate axis reflection of X . Again, in this paper we only refer to |xi| > λi as the definition

of |X| > λ for the simplicity of discussion.

The relationship between HC-CRE and CRE is straightforward. We now show that the HC-

CRE approaches CRE as α tends to 1.

Property 1 (Convergence):

lim
α→1

EH(X) = E(X) (5)

Proof We use the familiar L’Hôpital rule for the limit. We take the derivative of the numerator

and denominator with respect to α and evaluate the limit as α tends to one.

lim
α→1

EH(X)

= lim
α→1

−
∫

Pα(X > λ)− P (X > λ)
α− 1

dλ

= lim
α→1

−
∫

Pα(X > λ) log P (X > λ)dλ

= −
∫

P (X > λ) log P (X > λ)dλ

= E(X)

Based on HC-CRE, we define the CDF-HC divergence between N probability distributions Pk,

k ∈ {1, 2, . . . , N}. Henceforth in this paper we will consider X to be in the R+ domain and write

X instead of |X|.
Definition 5 (CDF-HC divergence): The CDF-HC divergence is defined as

HC(P1, P2, . . . , PN ) = EH(
∑

k

πkPk)−
∑

k

πkEH(Pk) (6)

We can rewrite HC(P1, P2, . . . , PN ) by substituting Eqn. 4 into Eqn. 6 to get a simplified version

of Definition 5.
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Property 2 (Simplification): Let P be the convex combination of {Pk}: P =
∑

k πkPk. We can

simplify HC to be

HC(P1, P2, . . . , PN ) (7)

= −(α− 1)−1(
∫

Rd
+

Pα(X >λ)dλ−
∑

k

πk

∫

Rd
+

Pα
k (Xk >λ)dλ)

We use this simplified CDF-HC divergence formula in all our computations and implementations.

2.2 Group-wise Point-set Registration Model

Denote the N point sets to be registered as X̄k, k ∈ {1, 2, · · · , N}. Each point-set X̄k consists of

points x̄i
k ∈ Rd, i ∈ {1, 2, · · · , Dk}, Dk being the number of points in the point-set X̄k. Assume each

point-set X̄k is related to the finally registered data Xk via an unknown transformation function

fk, and let µk ∈ RDk × Rd be the set of transformation parameters associated with each function

fk, i.e. Xk = fk(X̄k) and each Xk consists of points xi
k ∈ Rd, i ∈ {1, 2, · · · , Dk}.

To group-wise register all the given N point sets, we need to recover the transformation pa-

rameters µk, k ∈ {1, 2, · · · , N}. This problem can be modeled as an optimization problem with

the objective function being the CDF-HC divergence between the N survival functions computed

from the deformed point sets, represented as Pk = P(Xk), k ∈ {1, 2, · · · , N}.

The group-wise registration problem a.k.a. the atlas construction problem can now be formu-

lated as,

min
µk

HC(P1, P2, . . . , PN ) + η
N∑

k=1

||Lfk||2

= min
µk

(EH(
∑

k

πkPk)−
∑

k

πkEH(Pk))+η
N∑

k=1

||Lfk||2 (8)

In Eqn. 8, a standard regularization of the transformation functions {fk} is used. The parameter

η is a positive constant, which acts as the trade off between the two energies. It prevents the data

set from collapsing into a single point. By tuning η, we can control the degree of deformation, the

demonstration of which is shown in the experiment.

Let L denote the regularization operator. For example, L could be a differential operator such

as a second order linear differential operator corresponding to the thin-plate spline (TPS). In our

implementation, we choose TPS as the non-rigid deformation. Given a set of control points in Rd,

we write TPS as a general non-rigid mapping f : Rd → Rd, such that f(x) = WU(x) + A[x;I],

where A[x;I] is the affine part of the TPS transformation and the non-rigid part is determined by
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the transformation parameters stored in the d×n matrix W . Here U(x) is an n×1 vector consisting

of n basis functions Ui(x) = U(x, xi) = U(||x−xi||). Let r = ||x−xi||. Then U(r) is the reproducing

kernel of the thin-plate spline. Note that there exists a boundary condition PW T = 0 [7] for TPS,

where P is a (d + 1)× n matrix with the first column being ones and the rest of the columns being

the coordinates of the points in the point-set. This condition ensures that the non-rigid part of

the transformation is zero at infinity. Using the constraint that W lies in the null-space of P , the

dimension of W is reduced to (d+1)×d. Hence, the TPS transformation parameter µk = [A,W ] is

a d×n matrix. Therefore, the objective function for non-rigid registration can be formulated as an

energy functional in a regularization framework, where the bending energy of the TPS warping is

explicitly given by trace(WKW T ), with K = (Kij), and Kij = U(xi, xj) depending on the spline

kernel and the control point sets.

Having introduced the objective function and the transformation model, the task now is to

design an efficient way to estimate the empirical CDF-HC divergence and derive the analytic

gradient of the estimated divergence in order to efficiently achieve a good (albeit suboptimal)

solution.

3 Estimating the Empirical CDF-HC

In this section, we propose a technique for estimating the empirical CDF-HC. As mentioned pre-

viously, in [20] the Parzen window technique is used. Specifically a cubic spline Parzen window is

used to estimate the smoothed probability density function p of a given point-set. The cumulative

residual distribution function is computed by integrating over p. This is a constructive method

and requires numerical integration which can impact performance (as we will see in the experi-

ments). However, in this paper, we present a novel technique to construct the CDF surface using

the Dirac Mixture Model (DMM) which is computationally faster and simpler from an implemen-

tation perspective. We then derive the analytic gradient of CDF-HC, when the parameter α for

HC equals to 2. Without loss of generality, we only discuss the derivation for the 2D case, since

the derivation can be easily extended to the 3D case.

3.1 The Dirac Mixture Model

Mixture models [24] have been an effective tool for modeling shapes [10, 21, 25], especially when

the shapes are represented by feature points or landmarks. Here we resort to the Dirac Mixture
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Model for computing the cumulative residual function for a given point-set Xk. The DMM is

obtained by constructing a Dirac Delta function for each point in the given point-set. A DMM is

defined as a convex combination of Dirac Delta functionsD(xi
k|mi), where mi is the mean vector of

xi, i ∈ 1, 2, · · · , Dk. The probability density function is explicitly given as p(xi
k) =

∑Dk
i=1 φiD(xi

k|mi),

where φi are the weights associated with the component functions. For each component, the mean

vector is given by the location of each point. Without prior information, we can assume each

component has the same weight 1
Dk

. The spatial transformation used in registration - the TPS in

our case - is applied to the mean vector which coincides with the location of the points.

From the DMM’s use of Dirac delta functions, we see that each such delta function can be

integrated to obtain a Heaviside Step function for each point, that is by constructing a transformed

Heaviside Step function H i for every point xi ∈ Rd, i ∈ {1, 2, · · · , Dk}. The CDF surface for the

point-set Xk is achieved by summing up all the H i functions.

Pk(Xk > λ) =
1

Dk

Dk∑

i

H i(x, xi) (9)

where the definition of H(t, t0) in one-dimension is given by

H(t, t0) =





1 t ≤ t0

0 t > t0
(10)

The separability of the Heaviside function in higher dimensions allows us to turn the multi-

dimensional Heaviside function into the multiplication of one-dimensional Hs. Also note that

the integral of H(t, t0), from 0 to ∞, is t0. This simple but important property will be used in

gradient computation in the next subsection.

3.2 Gradient Computation

Now we will derive the analytic gradient of CDF-HC when α = 2. Note that it is the only case

for which CDF-HC has a concise expression for estimating the CDF and a closed form solution for

the gradient of the cost function. This will have ramifications in the optimization strategy since

CDF-HC is not available in closed form for α 6= 2. Therefore, we mainly focus on α = 2 in this

paper.

Let α = 2 in Eqn. 7. We get

HC(P1, P2, . . . , PN ) (11)

= −
∫

Rd
+

P 2(X > λ)dλ +
∑

k

πk

∫

Rd
+

P 2
k (Xk > λ)dλ
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We begin by deriving the detailed formula for each term of this equation. Take the 2D case

with d = 2 and xi = [xi, yi] as an example in our discussion. First, we compute the second term of

Eqn. 11. Since the Heaviside Function is separable, for a given point-set Xk, we have

Pk(Xk > λ) =
1

Dk

Dk∑

i=1

H(x, y, xi, yi) (12)

=
1

Dk

Dk∑

i=1

H(x, xi)H(y, yi)

Hence,

P 2
k (Xk > λ)

=
1

Dk
2

Dk∑

i=1

H(x, y, xi, yi)
Dk∑

j=1

H(x, y, xj , yj)

=
1

Dk
2

∑

i,j

H(x,min(xi, xj))H(y, min(yi, yj))

(13)

Now, we compute the first term, i.e. the convex combination term, of Eqn. 11. Recall that

P (X > λ) =
N∑

k=1

πkPk(Xk > λ) (14)

We have

P 2(X > λ) (15)

= (π1P1(X1 > λ) + . . . + πNPN (XN > λ))2

=
∑

k

(πkPk(Xk > λ))2+
∑

l 6=s

πlπsPl(Xl >λ)Ps(Xs >λ)

The first part of Eqn. 15 coincides with Eqn. 13. For the second part, we have a similar expression,

i.e.

Pl(Xl > λ)Ps(Xs > λ) (16)

=
1
Dl

Dl∑

i=1

H(x, y, xi, yi)
1

Ds

Ds∑

j=1

H(x, y, xj , yj)

=
1

DlDs

∑

i,j

H(x,min(xi, xj))H(y, min(yi, yj))

where

min(x, y) = − 1
β

log(e−βx + e−βy) (17)
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Note that we employ an analytical form of the min operator in our previous expressions so that

we get the analytical gradient.

∂ min(x, y)
∂x

= {
e−βx

e−βx+e−βy x 6= y

1 x = y
(18)

which is later used in this paper. It is obvious that the two equations, Eqn. 13 and Eqn. 16, share a

uniform expression except for a scaling constant c.

g(x, y) = c
∑

i,j

H(x,min(xi, xj))H(y, min(yi, yj)) (19)

where c is a stand-in for the two different constants 1
Dk

2 or 1
DlDs

. Since we are working in 2D

Euclidean space, the integral in Eqn. 11 is replaced with the 2D integral in the R2
+ domain.

HC(P1, P2, . . . , PN ) (20)

= −
∫∫

R2
+

P 2(X > λ)dλxdλy+
∑

k

πk

∫∫

R2
+

P 2
k (Xk >λ)dλxdλy

Since the Heaviside function has a straightforward integral expression, we compute the 2D inte-

gral of the expression as

G(X) =
∫ ∞

0

∫ ∞

0
g(x, y)dxdy

(21)

=
∫ ∞

0

∫ ∞

0
c
∑

i,j

H(x,min(xi, xj))H(y, min(yi, yj))dxdy

= c
∑

i,j

∫
H(x,min(xi, xj))dx

∫
H(y, min(yi, yj))dy

= c
∑

i,j

min(xi, xj)min(yi, yj)

Therefore, the key issue remaining is to derive the analytic gradient for G(X), since the cost

function is a linear combination of G(X). We use the chain rule to get

∂G(X)
∂µk

=
∂G(X)
∂Xk

∂Xk

∂µk
(22)

where

∂G(X)
∂Xk

= [
∂G(X)

∂x1
k

, . . . ,
∂G(X)

∂xDk
k

]

∂G(X)
∂xi

k

= [
∂G(X)

∂xi
k

,
∂G(X)

∂yi
k

]
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and

∂G(X)
∂xi

k

= c
∑

i,j

min(yi, yj)
∂ min(xi, xj)

∂xi

Note that in Eqn. 13, xi and xj refer to the x-coordinates of points from the same point-set, whereas

in Eqn. 16, they refer to the x-coordinates from different point sets.

Let Bk be the TPS basis matrix computed in advance from the given point-set X̄k. The first

three columns of Bk span the affine basis and the remaining columns span the nonlinear warping

basis. The transformation therefore can be formed as Xk = Bkµk. Hence,

∂Xk

∂µk
= B′

k (23)

Finally, we produce the gradient of the objective function as follows,

∂HC

∂µk
=

∂HC

∂Xk

∂Xk

∂µk
(24)

= [
∂HC

∂x1
k

,
∂HC

∂x2
k

, . . . ,
∂HC

∂xDk
k

]B′
k

where

∂HC

∂xi
k

= ∂(−
∑

π2
k

∫ ∫
P 2

k (Xk > λ)dxdy (25)

−
∑

l 6=s

πlπs

∫ ∫
Pl(Xl > λ)Ps(Xs > λ)dxdy

+
∑

k

πk

∫ ∫
P 2(Xk > λ)dxdy)/∂xi

k

= −
∑

π2
k

1
Dk

2

∑

i,j

min(yi, yj)
∂ min(xi, xj)

∂xi

−
∑

l 6=s

πlπs
1

DlDs

∑

i,j

min(yi, yj)
∂ min(xi, xj)

∂xi

+
∑

k

πk
1

Dk
2

∑

i,j

min(yi, yj)
∂ min(xi, xj)

∂xi

The expression is also similar with ∂HC
∂yi

k

. The above derivation is directly extensible to higher

dimensions as a result of the separability of the Heaviside Function.

We can see that the equation for the objective function Eqn. 21 and gradient Eqn. 24 are simple

to implement and computationally fast. With the analytical gradient being explicitly derived, we

can use the gradient-based numerical optimization methods such as quasi-Newton [26] to yield

a good solution. Meanwhile, and from the overall perspective, robustness is achieved by using
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a CDF based objective function. Note that our algorithm can also be applied to yield a biased

registration if we fix one of the data sets as the model and estimate the transformation from the

scene data sets to the model. In the next section, we will use this "byproduct" - a biased group-wise

registration - to propose a series of comparison experiments, by taking the fixed model data set as

ground truth.

4 Complexity Analysis and Experimental Results

We first briefly analyze the computational complexity of both CDF-JS and CDF-HC algorithms and

show that our model greatly reduces the computational complexity—in terms of CDF estimation—

and thus increases the efficiency of the overall approach. Next, we show a demonstrative example

of 2D atlas construction and illustrate the effect of the regularization parameter η by showing

the group-wise registration results for a variety of η. To demonstrate the accuracy and robust-

ness of our CDF based method over the corresponding PDF based approach, a set of comparison

experiments were carried out on both synthetic and real 2D data sets. Finally, we show the re-

sults of group wise 3D registration and a non-rigid group wise registration assessment method is

proposed to evaluate the registration without knowing the ground truth.

4.1 Computational Complexity Analysis

Here, we compare the computational complexity for the objective functions of CDF-JS and CDF-

HC. Without loss of generality in the mathematical analysis, we assume there exist N point sets

with dimension d, each consisting of n points. Also we assume the weights (i.e. πk in Definition 1

& 4) for all the point sets to be equal to 1
N . Since both methods use TPS as the non-rigid transfor-

mation model, we only compare the complexity of the information theoretic measure part of their

cost functions, since the TPS regularization part has the same computational complexity. Taking

the d = 2 case as an example, we reproduce the cost functions for CDF-JS (Eqn. (7) in [20] but

using our notation) and CDF-HC here:

CDF− JS : C(P1, P2, . . . , PN ) (26)

= −
Nλx∑

λx

Nλy∑

λy

P log P +
1
N

N∑

k=1

Nλx∑

λx

Nλy∑

λy

Pk log Pk
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where Pk =
∑n

i=1 Φ(xk
i )Φ(yk

i ), P = 1
N

∑N
k=1 Pk and Φ() is the cumulative residual function of the

cubic spline kernel used to compute CDF-JS.

CDF−HC : HC(P1, P2, . . . , PN ) (27)

= −
∫ ∫

R2
+

P 2dλxλy+
1
N

N∑

k=1

∫ ∫

R2
+

P 2
k dλxλy

where P = 1
N

∑N
k=1 Pk and

∫ ∫
R2

+
Pk1Pk2dλxλy =

∑n
i=1

∑n
j=1 min(xi, xj)min(yi, yj).

Since the computational complexity for the functions Φ(), min() and log() do not depend on the

number of the inputs, it is valid to assume that those functions have a fixed O(1) cost. Therefore,

it is clear that the complexity for the CDF-JS algorithm is O(NλNγNn) and the complexity for

the CDF-HC algorithm is O(Nn2). Since in the Parzen window estimation, Nλ and Nγ are the

number of discrete coordinate values in the x and y axis respectively, we thus have NλNγ À n and,

consequently, we conclude that the computational complexity for CDF-JS is asymptotically much

larger than that for CDF-HC. (As a brief aside, we would also like to mention that our experience

with both algorithms—CDF-JS and CDF-HC—has been overwhelmingly in favor of the latter, but

this perspective is driven by our choice of quasi-Newton-based optimization algorithms and the

fact that the objective function and gradient are available in closed form for α = 2 for CDF-HC.)

4.2 Group-wise Registration for Atlas Construction

In this section, we first show a demonstrative example of our CDF-HC algorithm for unbiased 2D

atlas construction on a real Corpus Callosum (CC) data set. In this experiment, we manually ex-

tracted 63 points on the outer contour of the CC from seven normal subjects. Our algorithm can

simultaneously align multiple shapes into a mean shape as shown in Fig. 1. Next, we perturbed

the seventh data set and added outliers to it (as shown in the first figure of Fig. 2, denoted by

’+’). The registration results of both PDF-JS and CDF-HC are shown in the Fig. 2. We found that

the CDF-HC method can better register the outlier shape to the emerging mean shape. In these

experiments, the initialization of the non-rigid registration parameters are simply [I;0] for all the

affine parts and 0 for all the non-rigid ones. All the experiments in this paper were implemented

in MATLAB R© using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method of op-

timization with a mixed quadratic and cubic line search procedure. This quasi-Newton method

uses the BFGS formula for updating the approximation of the Hessian matrix. When analytic

gradients are used, (and this is the base case for our approach with α = 2) cubic line searches
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Figure 1: Unbiased group-wise non-rigid registration via CDF-HC on real CC data sets. The first

and second rows and the leftmost image in the third row show the deformation of each point set

to the atlas. The initial point set is denoted with ’+’ and the deformed one ’·’. The middle image

in the third row shows the superimposed point sets before registration. The rightmost image in

the third row shows the superimposed point sets after registration.
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Figure 2: Unbiased group-wise non-rigid registration via PDF-JS and CDF-HC on CC data sets,

with the seventh being the outlier. We denote the inliers with ’·’ and the outlier with ’+’.
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Figure 3: Examples of different regularization parameters of TPS that produce a relatively stable

atlas.

are preferred. When numerical approximation of the gradients is used, the quadratic line search

method is preferred since it requires fewer gradient evaluations.

Our algorithm requires us to choose a good value of the regularization parameter η. To illus-

trate the effect of registration via altering η , we finally construct a set of atlases for different η.

The same Corpus Callosum data sets were used in this experiment. Fig. 3 shows the atlas with

different η. Experimental results indicate that the η that produce relatively stable atlas is in the

range of [0.000005, 0.00005]—an order of magnitude range.

In the next set of experiments, we examined the (anecdotal) variability w.r.t. α. In these ex-

periments, we used the numerical gradient in the BFGS quasi-Newton method even for α = 2

for the sake of a fair comparison. While it is difficult to reach a conclusion, we observed that the

optimization process was much longer especially since each result had to be obtained for the best

setting of the regularization parameter. The increased difficulty of the optimization—due to the

absence of the analytical cost function and gradient—appeared to narrow the range (of regulariza-

tion parameter values) over which we obtained good registrations. We observed a deterioration

of the quality of the registration results as α is increased beyond 3.

To demonstrate the accuracy and robustness to noise of our algorithm over CDF-JS and PDF-

JS, we designed the following procedure to perform a biased 2D atlas construction on synthetic

data sets with and without outliers using both methods. We first manually extract 113 points on

the outer contour of the Beijing 2008 Olympic Logo 1, namely point set B, and randomly generate

6 sets of TPS transformation parameters. We then applied these transformations to B to get 6

randomly transformed data sets (as shown in the first figure in Row number 1 of Fig. 5, indicated

by ′+′). The same procedure was applied to a fish shape taken from GatorBait 1002, namely point-

1This dataset is available at http://en.beijing2008.cn/en_index.shtml
2This dataset is available under the terms of the GNU General Public License (GPL version 2) at
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Figure 4: Registration performed using different values of α. In all these experiments, the numer-

ical gradient was used.

set F , so as to get another 6 non-rigid transformed data sets (the first figure in Row number 2

of Fig. 5, indicated by ′+′), each containing 150 points. We also disturb the data sets with 10

randomly generated point jitter for each of the fish data sets. The CDF-HC, CDF-JS and PDF-JS

algorithms are used for group-wise registration of the 6 newly created data sets to the original B

or F . For all three methods, we use the same initialization for the optimization parameters, that

is we initialize the affine portion with [I;0] and 0 for the non-rigid parameters. By implementing

the above procedure, we established the ground truth atlases for both Olympic Logo and fish data

sets, i.e. B and F , and hence we are able to compare the three methods with the same fixed ground

truth.

The Kolmogorov-Smirnov (KS) statistic [27] was computed to measure the difference between

the CDFs of the ground truth point-set and the newly registered point sets. A natural question to

ask at this juncture is why we are using a different statistic to gauge registration accuracy. The rea-

son is simple. We do not want to use the same registration measure - the HC divergence - to also

gauge the registration accuracy. Furthermore, the HC divergence is not an established measure

(though we’re toiling as hard as we can to change that) whereas the KS statistic is extremely well

http://www.cise.ufl.edu/ãnand/GatorBait_100.tgz
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Figure 5: Biased group-wise non-rigid registration via CDF-JS, PDF-JS and CDF-HC on Olympic

Logo and 2D fish data sets. The initial point sets are denoted with ’+’ and the deformed ones ’·’.
From left to right: The first column shows the superimposed point sets before registration. The

second column shows the superimposed point sets after registration using the CDF-JS method,

the third shows the same except with PDF-JS and the last column shows the results after CDF-HC

registration.
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known and widely used (albeit usually for significance testing). Note that here we are not doing

statistical significance tests but instead using the KS-statistic as a measure of the dis-similarity be-

tween two underlying probability distributions. While the one-dimensional KS-statistic denoted

as D(1) is independent of the special form of the distribution this is not true in higher dimen-

sions. A popular 2D extension D(2) was proposed by Peacock in [28], wherein he showed that

for most cases, Peacock’s version of the 2D KS statistic was sufficiently distribution-free. Later

in [29], Gosset generalized D(2) and proposed a 3D KS statistic D(3). Note that in 2D, there are

3 independent directions (4 directions in total) to perform the cumulative integration and in 3D

there are a total of 8 such directions. The procedures by Peacock and Gosset were to adopt the

largest differences between the two empirical cumulative distribution functions (eCDF), among

all the 4 or 8 cumulative directions in 2D and 3D respectively.

In this experiment, we constructed the 2D/3D eCDFs from the point-sets following the for-

mulae proposed in [29]. An example of the 2D eCDF computed from one of the 4 directions is

shown in Fig. 6. We computed the KS-statistic between eCDFs from the ground truth and the

registered point sets. Let Fg be the eCDF of the ground truth and Fk be the eCDF estimated from

the kth registered point set. The average difference of the eCDF between the ground truth point-

set and registered point-sets are evaluated using 1
N

∑N
k=1 D(2)(Fg, Fk). The KS-statistics for both

Olympic Logo and fish data sets are presented in Table 1 and the registration results are shown in

Fig. 5. They clearly indicate that the CDF-HC method yields a smaller KS-statistic, hence better

registration and more immune to noise.

We also present the comparison using the average nearest neighbor distance3 in Table 2, which

also favors the CDF-HC method. For a pair of given point sets, the average nearest neighbor

distance is defined by finding the nearest neighbor from the second point set for each point in the

first point set and vice versa, and then computing the average distance over all the points. Here,

we compute the distance between each point set and the ground truth point set and then take the

average.

Table 1: KS statistic

KS-statistic CDF-JS PDF-JS CDF-HC

Olympic Logo 0.1103 0.1018 0.0324

Fish 0.1314 0.1267 0.0722

3We acknowledge an anonymous reviewer for this suggestion.
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Figure 6: Example meshes of the 2D empirical cumulative distribution function estimated from the

Olympic Logo and the fish data used for computing the KS-statistics with the integral performed

from one of the four directions.

Table 2: Average Nearest Neighbor Distance

ANN Distance CDF-JS PDF-JS CDF-HC

Olympic Logo 0.0367 0.0307 0.0019

Fish 0.0970 0.0610 0.0446

Finally, we present the results for 3D atlas construction. The initialization in the optimization

here is similar to the previous experiments, i.e. [I;0] for affine and 0 for non-rigid parameters.

The experiments were carried out on the hippocampus and duck data sets, the latter of which is

extracted from a web-based 3D data set4. Each data set contains 4 point sets. The unbiased group-

wise registration results for the hippocampus and duck data sets using the CDF-HC algorithm are

shown in Fig. 7 and Fig. 8, respectively. These experiments clearly demonstrate that our point-

set registration algorithm can simultaneously register multiple point sets, which can be used to

compute a meaningful mean shape/atlas.

4.3 Group-wise Registration Assessment Without Ground Truth

In the previous section, a set of atlas construction experiments for real data were presented. How-

ever, there is no standard validation method to evaluate the “goodness” of a computed atlas shape

(or in our case an atlas probability distribution). Therefore, we present a group-wise registration

4http : //www.3dxtras.com
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Figure 7: Atlas construction from four 3D hippocampi data sets. Each point set contains

400, 429, 554, 310 points respectively. The first row and the leftmost image in the second row show

the deformation of each point set to the atlas. The initial point set is denoted with ’×’ and the

deformed one ’o’. The middle image in the second row shows the superimposed point sets be-

fore registration. The rightmost image in the second row shows the superimposed point sets after

registration.
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row and the leftmost image in the second row show the deformation of each point set to the atlas.

The initial point set is denoted with ’×’ and the deformed one ’o’. The middle image in the second

row shows the superimposed point sets before registration. The rightmost image in the second
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assessment criterion, with the ground truth unknown, in order to validate our registration.

Since the KS-statistic is a standard measure of dis-similarity between two CDFs, we decided

to generalize the KS-statistic to measure the quality of unbiased group-wise registration. A pro-

cedure that is similar to the one presented in previous subsection 4.2 is used for computing the

empirical cumulative distribution function in the estimation of the KS-statistic. Intuitively speak-

ing, if the point sets are better registered, the estimated 2D/3D eCDF should be more similar to

each other, and hence, we should obtain a smaller KS-statistic between each eCDF estimated from

the registered point sets pair-wisely than the eCDF estimated from the initial point set pairs. We

use the following measure to evaluate the CDF-HC atlas construction:

K =
1

N2

N∑

k,s=1,k 6=s

D(Fk, Fs) (28)

where Fk is the eCDF from the one point set out of the N point sets. D is D(2) or D(3) in 2D or 3D

case respectively, that is, the KS-statistic between two 2D/3D eCDFs. K thus evaluates the average

pairwise KS-statistic among these point sets.

The results for CDF-HC group wise registration assessment usingK for the 2D and 3D unbiased

atlas construction experiments are listed in Table 3. Our assessment measure K is computed for

each data set before and after registration.

Similarly, the average nearest neighbor distance is also computed here in Table 4 for reference.

Table 3: Non-rigid group-wise registration assessment without ground truth using KS statistics

Before Registration After Registration

Corpus Callosum 0.3226 0.0635

Corpus Callosum with outlier 0.3180 0.0742

Olympic Logo 0.1559 0.0308

Fish with outlier 0.1102 0.0544

Hippocampus 0.2620 0.0770

Duck 0.2287 0.0160

Obviously, after CDF-HC registration, the point sets achieve a much lower value for both K
as well as the average nearest neighbor distance, as compared to the measures before registration.

This indicates that the newly registered point sets more resemble each other than the point sets

before registration.
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Table 4: Non-rigid group-wise registration assessment without ground truth using average nearest

neighbor distance

Before Registration After Registration

Corpus Callosum 0.0291 0.0029

Corpus Callosum with outlier 0.0288 0.0092

Olympic Logo 0.0825 0.0022

Fish with outlier 0.1461 0.0601

Hippocampus 13.7679 3.1779

Duck 15.4725 0.3280

5 Conclusions

In this paper, we presented a novel and robust algorithm that utilizes an information theoretic

measure—the CDF-based Havrda Charvát (CDF-HC) divergence—to simultaneously register mul-

tiple unlabeled point-sets with unknown correspondence. Inspired by the separability of the

Heaviside Function, we model each point-set using a Dirac Mixture Model so as to employ the

Heaviside Function in the CDF surface construction, which greatly simplifies the computation.

We also discovered that the cost function has a closed-form solution for its derivative if the pa-

rameter for the CDF-HC divergence is set to α = 2. This enabled us to reach simple but elegant

formulae for both the cost function and its derivatives. The advantages of our algorithm over

existing techniques are that CDF-HC can be used for unbiased group-wise point-set registration

and it is robust, computationally faster and much simpler from an implementation perspective.

We compared the computational complexity of objective function computation for CDF-HC and

CDF-JS, showing that CDF-HC is much more efficient. We also compared the performance of

CDF-HC, CDF-JS and PDF-JS methods and showed 2D experimental results on a variety of data

sets to demonstrate the advantage of correctness and robustness of our CDF-HC algorithm over

the corresponding CDF- and PDF-based approaches. Finally, we defined a KS-statistic based mea-

sure to evaluate the quality of the group wise registration for real data sets for the case when the

ground truth atlas is unknown. Note that we use the TPS as our transformation model since this

model is good enough for the deformations of the point sets in this atlas construction problem

and we did not observe any local folding. A promising immediate avenue for future research is

the incorporation of a diffeomorphism model of deformation [30]. As this effort expands to larger
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data sets, we may have to consider simultaneously learning multiple exemplar atlases.
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