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We present a completely automatic method to build stable average anatomical
models of the human brain using a set of magnetic resonance (MR) images. The
models computed present two important characteristics: an average intensity and
an average shape, both in a single image. We provide results showing convergence
toward the centroid of the image set used for the computation of the model. In
particular, the RMS distances between the model and the MR images contained in
the set stabilize in a range of 2.88 to 3.36 mm from a range of 4.62 to 5.51 mm
initially after only one iteration. As for the influence of the reference image cho-
sen for the model construction, this is minimal with differences of about 1.0 mm,
from approximately 3.5 mm initially. These results ensure the usefulness of our
approach. c© 2000 Academic Press

1. INTRODUCTION

An important tool used to diagnose abnormal anatomical variations are medical at-
lases [1]. Traditional ones, such as those by Talairach and Tournoux [2] or Schaltenbrand and
Wahren [3], are presented in textbooks, but computerized atlases comprising information
in a more practical and quantitative manner are becoming available [4–16]. They usually
include information obtained from a set of subjects, as opposed to a single individual in
most paper atlases, making them more representative of a population. For example, the
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FIG. 1. Average model construction method.

Montreal Neurological Institute (MNI) used 305 normal subjects to build an atlas compris-
ing intensity variations after affine registration in the stereotactic space defined by Talairach
and Tournoux [8]. These methods also enable the calculation of normal shape variations,
such as in the works of Geeet al. [17], which present a statistical framework for the con-
struction of upgradable statistical atlases, and Thompson and Toga [18], which presents a
probabilistic atlas of the human brain based on random vector field transformations.

The following work aims to develop and validate a concept drafted in a previous paper [19]
to build an average model of the human brain using a set of magnetic resonance (MR) images
obtained from normal subjects. This model has two important characteristics: average tissue
intensity and average tissue shape up to an affine transformation. We intend to demonstrate
that the model construction converges toward the centroid of the MR image set.

As depicted in Fig. 1, our method can be summarized in the following manner. Affine
registration between all the images of the set and a reference image corrects for positioning
and global shape differences due to translation, rotation, scaling, and shearing, as well as
global linear intensity variations due to acquisition parameters or preprocessing. These are
variations that are not of concern for our study. Elastic registration is then used to evaluate
residual variations due to pure morphological differences and produce images having the
same shape as the reference. Averaging the residual deformations, which are the inverses
of the transformations that map each image of the set to the reference image, and the
locally registered images yields an average deformation and an average intensity image,
respectively. The average deformation is then applied to the average image to produce
the model. It presents in a single image an average intensity and shape modulo an affine
transformation corresponding to the affine characteristics of the reference image.

Although similar in terminology, the average shape and the average intensity character-
istics have different purposes. The average shape represents an average ofmorphological
variations. This is generally a well-understood concept. On the other hand, the average
intensity is meant to average theresponse of corresponding tissues to the acquisition pa-
rameters. Also, assuming Gaussian noise in each MR scan, the average intensity increases
the signal to noise ratio in the resulting model compared with individual scans.

The main contribution of this paper is the description of a fully automatic technique to
obtain anaverage intensity and shapeimage, producing theaverage model M, and to show
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that this model, up to an affine transformation, is stable with respect to the choice of the
initial reference image and repeated applications of the algorithm (iterations).

The most similar work regarding average intensity atlases is that of Bookstein [20] who
created from nine MR scans a two-dimensional image representing the average intensity of
the mid-sagittal plane. Thirteen manually identified landmarks in the mid-sagittal plane of
each scan where matched with a reference image using the thin-plate spline interpolant [21].
The nine resampled images where then averaged to result into a morphometric average atlas.
Our method differs primarily by two aspects. First, as suggested by Bookstein [20], we make
full use of the three-dimensionality of the scans to compute a three-dimensional average
image. Second, our registration method is automatic and computes a dense deformation
field instead of an interpolated function based on 13 landmarks. This deformation identifies
for each voxel of the reference the corresponding positions in the other scans. Within
this process, every voxel of the reference can be thought of as a landmark automatically
determined in the other scans.

The work of the MNI group [8], where 305 three-dimensional MR scans were registered
using translations, rotations, and scalings and averaged to build a statistical neuroanatomical
model, also relates to our work. We enrich this idea by proceeding further in using a less
constrained type of deformation after the affine match to accommodate for local shape
variations.

In the same vein, Woodset al. [13] describe a method that finds from a set of images a
common space that preserves the average orientation, size, and affine shape of the group by
registering all possible pairs of images it contains. Averaging the images after affine mapping
to this common space produces an average intensity brain atlas in the average affine space.
Their method is computationally very intensive as it requiresn(n − 1)/2 registrations,n
being the number of subjects in the group. The basic difference between this approach and
the one by the MNI group is that this one finds the average affine space, whereas the MNI
method uses Talairach space.

The average shape concept is most similar to the beautiful work of the Brown and
Washington groups [14, 22], who have put together a framework in which the construction
of a template from a set of anatomies is proven to minimize the energy of the deformations
required to map it onto all the elements of that set. Our work complements theirs in that
we provide quantitative measurements confirming their formulation, although we do not
compute small deformations as is required for their proof. It should be noted that our
resulting model also includes average intensity information and that our respective groups
use different registration methods.

Le Briquer and Gee [12] have also developed a method that provides, for a given group
of subjects, the mean shape and the modes of principal variation along with their amplitude.
Their approach is set in a statistical framework and aims at deriving a shape model. Our
method differs in that we aim for the analysis of local information rather than global patterns.

The work presented here also relates to the methodologies of Subsolet al.[16], Bookstein
[23], and Kendall [24], who compute average shapes modulo similarity or affine transforma-
tions. We have not tried to strictly follow the theory developed in their works. Our intention
was to conform to the idea of making an abstraction of differences between images due to
first-order transformations and analyze residual variations. Our main contribution resides
in the characteristics used to build the average shape, that is, the image intensities instead of
landmarks or crestlines. Again, this enables the computation of dense deformation fields rep-
resenting variations everywhere in the MR scan, as opposed to interpolating transformations
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found using landmarks, lines, or surfaces. We believe this technique may find less accu-
rate matches in the close surroundings of the landmarks, but that it provides better overall
registration.

As will be shown, compared to these previous efforts, our method provides clearer images
with higher contrasts and sharper definitions of tissue boundaries. Most importantly, we
provide numbers showing the convergence of the model toward the centroid of the image set.

The remaining sections of this paper are organized in the following manner. First, we
detail the method used to construct the average model. We then present results showing the
convergence of the method toward an average intensity and shape model and show the effect
of the choice of reference image. We conclude with a discussion on future research tracks.

2. METHODOLOGY

2.1. Registration

The work that follows assumes that each point in one image has a corresponding equiv-
alent in the others. It also assumes that a matching method which is able to find these
correspondences and is capable of providing a vector field representing those relationships
is available. In theory, neither of these conditions is realized. That is, at a microscopic
scale, there is not a one-to-one relationship between the brain cells of two individuals, and
assuming there is, to this day, no algorithm has been able to find it. In practice however, de-
forming one brain so its shape matches that of another is conceivable and many algorithms
realizing this process have been developed [21, 4, 25–27, 17, 13]. The procedure used in
the following work is the demons method [28] using a complete grid of demons. We briefly
detail it here and refer the reader to the original article for more information.

2.1.1. Evaluating shape differences.When applied to MR images, the demons algo-
rithm can be considered as an optical flow variant [29]. From this point of view, the 3D
images to be registered are considered as a time sequence represented byI (x, t) where
x= (x1, x2, x3) is a voxel position in the image andt is time. It computes forces by con-
straining the brightness of brain structures to be constant in time so that

d I (x, t)

dt
= 0.

This leads us to the basic optical flow formulation (see [29] for details about the derivation),

v = −∇x I (x, t)
∂ I (x, t)/∂t

‖∇x I (x, t)‖2 ,

which is the movement component in the direction of the brightness gradient∇x I (x, t)=
((∂ I (x, t)/∂x1), (∂ I (x, t)/∂x2), (∂ I (x, t)/∂x3)). For numerical stability reasons, when
∇x I (x, t) is close to zero, the denominator of the above formula is modified to result
in the basic displacement formulation for the demons algorithm using a complete grid of
demons,

v = −∇x I (x, t)
∂ I (x, t)/∂t

‖∇x I (x, t)‖2+ |∂ I (x, t)/∂t |2 .

When‖∇x I (x, t)‖=0 no displacement is computed.
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As with all optical flow formulations based on differential techniques, the problem here
resides in finding the components of the movement in the directions orthogonal to the
gradient. Many regularization methods have been proposed [30], each with their strengths
and weaknesses. The one proposed by Thirion is to apply a Gaussian filter to each of the
three components ofv. This provides a smooth displacement field in a time efficient way.
It is interesting to know that Bro-Nielsen and Gramkow [31] have shown that regularizing
the deformation field using a Gaussian filter approximates linear elasticity.

The method is iterative and makes use of a multiscale scheme which resolved the problem
of finding large deformations, a common problem with optical flow techniques and a basic
assumption in the formulation and implementation of the derivative filters.

2.1.2. Relaxing the intensity constraint.We mentioned that the registration algorithm
assumes the same intensity for corresponding brain structures in the images to be registered.
For all sorts of reasons, such as acquisition parameters or preprocessing, this may not be the
case. To relax this constraint, a linear intensity correction is evaluated at each iteration of
the registration procedure. It is obtained by finding the line that best fits the joint histogram
of the two images (see Fig. 2). This line is obtained using linear regression and outlier

FIG. 2. Intensity correction method.
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rejection. From experience, we know that such an intensity correction provides images in
which boundary definitions are clearer and better matched.

2.1.3. Relevance of the resulting transformation.In the case of intersubject nonrigid
registration, quantifying the accuracy of a method is difficult. One could deform an image
I using a known deformationD into I ′, registerI with I ′, and compare the result of the
registration withD, but this comparison is biased by the wayD is generated. For example,
since the demons algorithm produces a smooth deformation field, if the vectors ofD were
to be generated randomly, the method is expected to perform poorly. Another method is to
place landmarks in the images to register and evaluate differences between landmarks after
registration (see, for example, [13]). No such study has been performed using the demons
algorithm.

An approach which is a generalization of the previous one is to compare manual and au-
tomatic segmentation using segmentation propagation, the manual result serving as ground
truth (see, for example, [32]). We believe this approach may be better suited to evaluate the
quality of high-dimensional transformations such as the ones obtained using the previously
described algorithm (typically 3× 2003= 24× 106 degrees of freedom). Such a study has
been performed previously by Dawantet al. [33] for the demons algorithm. To summarize
their work, contours of different brain structures, large and small, have been segmented
manually on nine MR images. One of these images was mapped to all eight other images.
Then, manual and propagated segmentations were compared. Their similarity index is de-
fined as two times the area encircled by both contours divided by the sum of the areas
encircled by each contour. This index ranges from zero to one, with zero indicating zero
overlap and one indicating a perfect agreement between two contours. It is sensitive to both
displacement and differences in shape and it is thus preferable to a simple area comparison.
The average similarity indices between the manual and automatic segmentations was 0.96,
0.97, and 0.845 for the whole head, the cerebellum, and the head of the caudate, respec-
tively. Compared with intrarater results of 0.97, 0.97, and 0.88, the difference in the mean
similarity indices between two manual delineations and between the manual delineations
and the automatic segmentation method are statistically significant for the whole head and
the caudate but not for the cerebellum. The authors put forth though that similarity indices
over 0.85 correspond to contours that are virtually indistinguishable and that a more relevant
comparison should be performed using interrater manual results which are known to have
more discrepancies.

It should be pointed out that the demons algorithm does not explicitly track the transfor-
mation’s Jacobian to make sure its determinant is positive, so that in theory it is possible to
obtain a singular transformation. In our experience with MR data, this does not occur when
using a sigma of 1 voxel to define the Gaussian filter for the smoothing operation. Also,
the algorithm matches intensities and aglobal intensity correction is made over the whole
image. Hence, the transformed image is not an exact duplicate of the target. This is due to
the smoothness constraint applied to the displacement field which establishes a compromise
between intensity resemblance and uniform local deformations at each iteration and thus in
the final result.

2.2. Average Model Construction

The average model construction needs as input a reference imageI R and a setS of N
imagesI1, . . . , IN representing the group of subjects under consideration. The method can
be divided into six steps as follows:
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1. The first step is the evaluation of global shape and intensity differences between the
reference and each image of the set. Elastic registration betweenI R and Ii provides vector
fields Di giving for each voxelxR of I R the corresponding anatomical locationxi in Ii as
well as an intensity transformationI Ti . An affine transformationAi that best approximates,
in a least squares sense, the correspondingDi is computed. Since we have correspondences
between anatomical points of theIi andI R that have the formxi = Di (xR), we compute the
Ai by minimizing the distance

∑
x‖x − A−1

i (Di (x))‖2 (see, for example, [34] for a closed
form), where the summation is performed on the voxel positions inI R corresponding to
cerebral tissues1.

2. In the second step, residual variations due to pure morphological differences are
calculated. Elastic registration is performed betweenI R and eachIi using the corresponding
Ai and I Ti as initial transformation estimates. This provides the resulting matched images
I ′i as well as the residual vector fieldsRi .

3. The third step averages theI ′i , producing a mean intensity imagēI with the shape
of I R.

4. The fourth step aims to produce the deformation presenting the shape variations
betweenI R and the average shape of the set elements after correction of affine differences.
Since the residual deformationsRi are all defined in the same anatomical space, that of
I R, calculating their vectorwise averagēR(x)= 1/N

∑N
i Ri (x) will provide the desired

deformation.
5. The fifth and final step consists of applying this average residual deformation to

the average intensity image to obtain an average intensity and shape image representing
the anatomical average modelM . To avoid the cumbersome computation of the inverse
of a vector field, we use forward resampling [36] with mathematical morphology [37] to
guarantee continuity.

Considering numerical errors due to the fact that automatic registration methods usually
perform better when images are closer to each other, all these steps may be repeated by
replacingI R with M , thus constructing a model with a reference image closer to the centroid
of our set. Intuitively, this should reduce the mean registration error and provide a new model
M ′ closer to the theoretical solution.

In the next section we will further study this convergence with respect to the choice of
the reference imageI R and the number of iterations needed to achieve convergence.

3. RESULTS

The method is tested by computing four models using two reference imagesI R1 and I R2

(see Figs. 3a and 3b) and two image setsS1 and S2, each composed of five images (see
Table 1).

The 3D MR protocol provides coronal images obtained using a 1.5 Tesla SIGNA (General
Electric, Milwaukee, WI) whole body MR imaging system. One hundred and twenty four
coronal T1-weighted images were obtained using a spoiled gradient echo (SPGR) pulse
sequence (TE= 9 ms, TR= 34 ms, flip angle= 45◦). Two NEX acquisitions took 27 min
and 52 s. The field of view (FOV) of the images was 20 cm and each image refers to a

1 These positions are obtained using an automatic method for brain segmentation similar to that of Brummer
et al.[35]. From this point forward, all summations overx are assumed to be on the voxel positions obtained using
this algorithm.
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FIG. 3. Coronal slices from the two reference images, (a)I R1 and (b)I R2.

contiguous section of tissue of 1.6 mm thickness. The two acquisitions, as opposed to one,
gave increased contrast between gray and white matter and therefore better definition of
structure boundaries. The images showed no evidence of movement or chemical shift arti-
facts, and partial volumizing effects were minimal. The acquisition time was well tolerated
by all subjects. The 256× 256× 124 voxels of size 0.78 mm× 0.78 mm× 1.6 mm were
trilinearly interpolated to 200× 200× 198 to give cubic voxels of 1 mm side.

We analyze our results with regards to two factors. First, the iteration process is inves-
tigated to see if convergence is achieved, and if so, the speed of the convergence rate.
Second, we study the effect of changing the reference image. If the model is a true average
of the image set, changing the reference should produce an identical model up to an affine
transformation defined by the affine difference between references.

In our evaluation procedure, three metrics are used. The first determines the average
distance (AD) from an imageI to the elements of a setS,

AD( I , S) =
√√√√1

n

∑
x

1

N

N∑
i=1

‖x − Ri (x)‖2,

whereRi is the residual deformation fromI to the i th element ofS, n is the number of
voxels characterizing cerebral tissues andN represents the number of elements inS.

TABLE 1

References and Image Sets Used to Build

the Different Models

Model Reference Image set

M11 I R1 S1

M21 I R2 S1

M12 I R1 S2

M22 I R2 S2
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The second is the root mean square norm (RMSN) which supplies information regarding
the shape variation expressed by a deformation fieldD,

RMSN(D) =
√

1

n

∑
x

‖x − D(x)‖2,

wheren is the number of voxels characterizing cerebral tissues in the reference from which
D was obtained.

The third provides a measure of brightness disparity between two images,Ii and I j . It
is the normalized intensity difference (NID) of the images’ intensities at corresponding
locations,

NID( Ii , I j ) =
√∑

x(Ii (x)− I j (x))2∑
x(Ii (x))2

.

An easy way to interpret this formula is to note that ifI j = Ii , NID( Ii , I j )= 0; if I j = 2Ii ,
NID( Ii , I j )= 1; if I j = 1

2 Ii , NID( Ii , I j )= 0.5; and so on.

3.1. Effect of Iterating

To evaluate the effect of iterating, we construct the four models repeating the process five
times using the result of the previous iteration as the reference image. We will designate
the modelM jk , obtained with reference imageI j and setSk, computed at thei th iteration
by M (i )

jk . For convenience,M (0)
jk will be identified to the average intensity image having

the shape ofI j . This represents a sort of iteration after applying only the first three steps
described in Section 2.2.

Four measures were computed:

AD(M (i )
jk , Sk): The average distance from the reference of the current iteration to all

the elements of the set.
RMSN(R̄(i )

jk): The shape variation expressed by the residual deformation fieldR̄(i )
jk

whenM (i )
jk is used as the reference.

RMSN(D(i )
jk ): The shape difference between models computed at successive iterations.

D(i )
jk is the deformation obtained by registeringM (i )

jk with M (i+1)
jk .

NID(M (i )
jk , M (i+1)

jk ): The brightness disparity between models obtained at successive
iterations.

If the models computed tend toward the centroid of the image set, the first measure
should diminish. This process is depicted in Fig. 4a: as the model evolves toward the center
(dotted line), the average distance to the image set elements decreases. The second and third
measures, representing the shape evolution of the model (see Fig. 4b), should tend toward
zero. Finally, the fourth value should also decrease to zero since it represents the brightness
differences between successive models.

The results of these calculations on the four models are presented in Fig. 5. Note that
the iterations range up to 4 and not 5 since we compare models computed at iterationsi
andi + 1. We remind the reader that modelsM (0)

jk , that is, models before the first iteration,
characterize only average intensities and not average shapes.

From Fig. 5a, we know the average distance from the references to the image set elements
is between 4.62 and 5.51 mm and reduces to a range of 2.88 to 3.36 mm. Note that the
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FIG. 4. Evolution of the model (circles) toward the center of the image set (squares). (a) The average distance
of the model to the image set element decreases. (b) The distance between successive models diminishes.

average distances for the models built using the same image set are very close (0.09 mm
for both models), while the distance for the models built using different image sets is much
higher (in the range of 0.30 to 0.48 mm, depending on which models are compared). This
is easily explainable by the fact that different small image sets will tend to have different
average distances from their centroid. Compared to these values, the variation between
successive models (see Figs. 5b and 5c), which is in the range of 0.41 to 0.52 mm, seems
minor. Figure 5d presents numbers showing the brightness difference between successive
models diminishes rapidly to almost 0, increasing our belief that models do not evolve
significantly after the first iteration.

3.2. Effect of the Reference

If the models computed are equal up to an affine transformation, changing the reference
image should produce a model identical to the previous one after removing their affine
differences. To verify this characteristic, we performed anaffineregistration between models
built using the same image set.M (i )

21 is registered withM (i )
11 to provide the imageM ′(i )21 and

M (i )
22 with M (i )

12 to result inM ′(i )22.
Two measures were used:

RMSN(D(i )
k ): The shape variation fromM (i )

1k to M ′(i )2k. D(i )
k is the deformation obtained

by registering the two images.
NID(M (i )

1k , M ′(i )2k): The brightness disparity between the two models.

Results are shown in Figs. 6a and 6b, respectively. We note that shape variation between
the models reduces from about 3.4 to 0.9 mm. This last value is close to the difference
between successive models which we know from Figs. 5b and 5c to be approximately
0.4 mm. The brightness disparity also diminishes rapidly and does not change drastically
after the first iteration. From these results, one can see that the models built using different
reference images are very close, but are not identical. We believe the differences are due
to errors in our registration method and to the resampling procedure applied to the models
to put them in the same affine space, which tends to smooth the image. This last artifact
is not present when comparing models obtained from successive iterations as we did for
the results of Fig. 5d. Still, the average distance between models is less than the resolution
of the image, and both the average distance and the normalized intensity difference evolve
only slightly after the first iteration.

Figures 7 to 10 present some results obtained during this process. In Fig. 7 the average in-
tensity images corresponding to the reference images of Fig. 3 are presented. They basically
have the same shape as their respective reference image and their intensities corresponds
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FIG. 7. Average intensity images built using reference imagesI R1 (Fig. 3a) andI R2 (Fig. 3b) and the same
image setS1. They were obtained during the first iteration of the model construction method. Note how the signal
to noise ratio is increased while contrast is preserved. (a) Average intensity imageĪ built using I R1 andS1 during
the first iteration. (b) Average intensity imagēI built using I R2 andS1 during first iteration.

to the average of the image setS1. Note how the signal to noise ratio is increased while
contrast is preserved. These average intensity images are deformed using the corresponding
average residual deformations to provide the average models of Fig. 8. The average model
M (1)

21 is then registered withM (1)
11 using an affine transformation to set it in the same affine

space. This result is presented in Figs. 9a and 9b. The same procedure has been performed
for all five iterations for both image setsS1 andS2. The resulting models for the fifth it-
eration using image setS1 are also shown in Figs. 9c and 9d. In Fig. 10, slices are taken
where there is more variability in the cortex area and thus where our registration method
finds correspondences in which we have less confidence. As can be seen, in these regions
the model image is less clear and the contrast between gray and white matter is less pro-
nounced.

4. DISCUSSION

Figure 5 presents numbers showing that our method constructs average models well rep-
resenting the average intensity and shape of our image sets. In particular, Fig. 5a shows that

FIG. 5. Impact of the iteration process when computing the models. Note that the iterations range up to 4
and not 5 since we compare models computed at iterationsi andi + 1. We remind the reader that “models”M (0)

jk ,
that is, models before the first iteration, characterize only average intensities and not average shapes. (a) Average
distance to the reference of the current iteration. (b) Shape variation of the reference for the current iteration.
(c) Shape difference between models computed at successive iterations. (d) Brightness disparity between models
computed at successive iterations.

FIG. 6. Influence of the reference on the model computed. (a) Shape variation betweenM (i )
1k and M ′ (i )2k.

(b) Brightness disparity betweenM (i )
1k andM ′ (i )2k.

FIG. 12. (a) Coronal, (b) sagittal (left hemisphere), and (c) axial sections of the probabilistic atlas. Shape
variability is superimposed in red (see text for more details). Images are shown using the radiological convention,
i.e., patient’s left side is on the right side and vice-versa.
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FIG. 8. Average modelsM (1)
11 (a) andM (1)

21 (b) computed using reference imagesI R1 (Fig. 3a) andI R2 (Fig. 3b)
and the same image setS1. They were build from the average intensity images of Figs. 7a and 7b respectively.
(c) and (d) are the corresponding grids deformed by the average residual deformationR̄(0)

11 andR̄(0)
21 , respectively.

the average distance from one image to the set elements varies between 4.62 and 5.51 mm.
This distance reduces and stays between 2.88 and 3.36 mm after the first iteration. Figures 5b
and 5c illustrate a minor shape evolution of the models at each iteration. Furthermore, Fig. 5d
allows us to claim that the visual aspect of the models changes only minimally. This leads us
to the conclusion that the models constructed are different, but equivalent from a practical
point of view. That is, we believe the model slowly wanders around the optimum solution.
Their intensity difference is practically null, and their shapes, although different, all have
the same average distance to the other elements of the set. Hence, we believe one or two
iterations are sufficient to build representative average models.

The reader should appreciate the low noise, high contrast, and high quality of the models
produced in Figs. 8–10. They present models built using different reference images and the
same image set. The ventricular shape bias introduced usingI R2 is minimal if not null. Also,
Fig. 6 shows that the models built using different references seem to converge toward the
same solution. Their shape difference of about 0.9 mm presented in Fig. 6a is low compared
to the average distance between the models and the set elements, which is in the range of
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FIG. 9. Average models computed using reference imagesI R1 (Fig. 3a) andI R2 (Fig. 3b) and the same image
setS1. A coronal slice of (a)M (1)

11 , (b) M ′ (1)
21 , (c) M (5)

11 , and (d)M ′ (5)
21 . (b) and (d) have been transformed into the

same affine space as (a) and (c), respectively, and can therefore be compared directly.

2.88 to 3.36 mm and just over the distance between successive average models which varies
from 0.30 to 0.48 mm. Figure 6b also presents a low disparity between the different models’
intensities.

If familiar with the work of Bookstein [20] or the MNI group [8], the reader will appre-
ciate the high contrast and visual quality of the images produced, although due in part to
the smaller number of images used. To better visually appreciate the gain in using high-
dimensional volumetric maps (2002× 198× 3= 2.376× 107 degrees of freedom) instead
of affine transformations (12 degrees of freedom) during registration, Fig. 11 presents corre-
sponding slices of the modelM11 built using the method presented in this paper and the one
built restraining registration to affine transformations. Note that Figs. 11a–11c, obtained
using the method described above, provide higher contrasts and sharper definitions of tissue
boundaries than Figs. 11d–11f, which were obtained using affine registration only.

In the event that bad matches occur during registration, the model would reflect this
by having larger variances in deformation and/or intensity. The image obtained and the
corresponding statistics regarding deformations and intensities would not reflect normal
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FIG. 10. Average models computed using reference imagesI R1 (Fig. 3a) andI R2 (Fig. 3b) and the same
image setS1. (a) A coronal slice of (a)M (5)

11 and (b)M ′ (5)
21 . (b) has been transformed into the same affine space as

Fig. 9c and can therefore be compared directly. Compared with Fig. 9, these slices are taken where there is more
variability in the cortex area and thus where our registration method finds correspondences in which we have less
confidence. As can be seen, in these regions the model image is less clear and the contrast between gray and white
matter is less pronounced.

variations, but to a certain extent reflect normal variationswithin our registration framework.
It is our belief that the models obtained in this paper are intricately linked to our modeling of
the registration problem. Though cross-validation of registration techniques’ results reports
mutually coherent matches [38], average variations of 3 to 4 mm have been observed in this

FIG. 11. Corresponding slices ofM11 using affine registration ((d), (e) , (f)) instead of elastic registration
((a), (b), (c)). (a) Coronal slice, elastic registration, (b) sagittal slice, elastic registration, (c) axial slice, elas-
tic registration, (d) coronal slice, affine registration, (e) sagittal slice, affine registration, (f) axial slice, affine
registration.
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study. These figures are too large to give significance to our models’ statistics using other
registration methods.

Although beyond the scope of this article, we present in Fig. 12 preliminary results of a
probabilistic atlas built using the information gathered during the construction ofM11. This
figure presents slices of the average model on which information about shape variability is
superimposed in red. This variability is computed as follows: we calculate the voxelwise
covariance matrix of the residual deformation fieldsRi obtained from the registration of
each element ofS1 with M11. The determinant, or the product of the eigenvalues, of each of
these matrices is computed. The resulting values can be interpreted as probabilistic volumes
(see [39] for more detailed geometric interpretations of this measure). Hence, for a given
voxel, a large volume corresponds to a large variability of the positions of corresponding
voxels found inS1. This volume has been normalized and converted to a red intensity value
added to the MR image.

We remind the reader that this probabilistic atlas was built using only five normal subjects
and hence does not reflect the extent of normal variability that is to be found in a larger
population. Nonetheless, we point out that high variability was found in the cortical region,
which is known to present large shape variations. There also seems to be more variability
in the left hemisphere than in the right.

We are presently working on the evaluation of the number of subjects needed to fully
represent the extent of variations in a normal population. Further interpretations of the
corresponding probabilistic atlas will follow this work.

5. CONCLUSION

We have presented a completely automatic method to build average anatomical models
of the human brain using a set of MR images. To this end, brain shape variations between
subjects were identified. Differences due to linear transformations were excluded, resulting
in the quantification of pure morphological differences. The result is an average intensity
and shape image representative of the characteristics of the image set elements used for the
construction. Furthermore, we have shown that this model corresponds to the centroid of the
image set and does not depend on the reference image used for its construction. This stability
is very important to ensure the efficiency and usefulness of our method. The coupling of
such a high quality model with statistical information regarding normal deformations, such
as the one presented in Fig. 12, in the work of Thompson and Toga [18], or of the Brown
and Washington groups [14, 22], could enrich the significance of statistical tests by adding
intensity information, useful, for example, in detecting gliosis in T2 MR images, and would
supply an important tool in the analysis of normal anatomy.

6. APPENDIX

Nomenclature

Ai Affine component ofDi

D Deformation field resulting from elastic registration between any two
imagesIi and I j

Di Deformation field resulting from elastic registration between a reference
imageI R and an imageIi
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D(i )
jk Deformation obtained by registeringM (i )

jk with M (i+1)
jk

I Any image
Ii A particular image in a setS
I R Any reference image
I Ri A particular reference image
I ′ ImageI after application of the deformationD
I ′i ImageIi after application of the deformationDi

Ī A voxelwise average intensity image
M Any average model
M jk Average model obtained with reference imageI j and setSk

M (i )
jk M jk at thei th iteration

N Number of images in a setS
n Number of voxels characterizing cerebral tissues in an image
Ri Residual component ofDi

R̄ A vectorwise average deformation field
R̄(i )

jk R̄ whenM (i )
jk is used as the reference

S Any set of images
Sk A particular set of images
xR A voxel position in a reference imageI R

xi A voxel position in an imageIi

AD Average distance
NID Normalized intensity difference
RMSN Root mean square norm
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