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We present a completely automatic method to build stable average anatomical
models of the human brain using a set of magnetic resonance (MR) images. The
models computed present two important characteristics: an average intensity and
an average shape, both in a single image. We provide results showing convergence
toward the centroid of the image set used for the computation of the model. In
particular, the RMS distances between the model and the MR images contained in
the set stabilize in a range of 2.88 to 3.36 mm from a range of 4.62 to 5.51 mm
initially after only one iteration. As for the influence of the reference image cho-
sen for the model construction, this is minimal with differences of about 1.0 mm,
from approximately 3.5 mm initially. These results ensure the usefulness of our
approach. @ 2000 Academic Press

1. INTRODUCTION

An important tool used to diagnose abnormal anatomical variations are medical
lases[1]. Traditional ones, such as those by Talairach and Tournoux [2] or Schaltenbrand
Wahren [3], are presented in textbooks, but computerized atlases comprising informa
in a more practical and quantitative manner are becoming available [4—16]. They usu
include information obtained from a set of subjects, as opposed to a single individua
most paper atlases, making them more representative of a population. For example
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FIG. 1. Average model construction method.

Montreal Neurological Institute (MNI) used 305 normal subjects to build an atlas compr
ing intensity variations after affine registration in the stereotactic space defined by Talair
and Tournoux [8]. These methods also enable the calculation of normal shape variati
such as in the works of Geat al. [17], which present a statistical framework for the con-
struction of upgradable statistical atlases, and Thompson and Toga [18], which presel
probabilistic atlas of the human brain based on random vector field transformations.

The following work aims to develop and validate a concept drafted in a previous paper
to build an average model of the human brain using a set of magnetic resonance (MR) im:
obtained from normal subjects. This model has two important characteristics: average ti
intensity and average tissue shape up to an affine transformation. We intend to demons
that the model construction converges toward the centroid of the MR image set.

As depicted in Fig. 1, our method can be summarized in the following manner. Affi
registration between all the images of the set and a reference image corrects for positio
and global shape differences due to translation, rotation, scaling, and shearing, as we
global linear intensity variations due to acquisition parameters or preprocessing. These
variations that are not of concern for our study. Elastic registration is then used to evalt
residual variations due to pure morphological differences and produce images having
same shape as the reference. Averaging the residual deformations, which are the inv
of the transformations that map each image of the set to the reference image, anc
locally registered images yields an average deformation and an average intensity im
respectively. The average deformation is then applied to the average image to proc
the model. It presents in a single image an average intensity and shape modulo an &
transformation corresponding to the affine characteristics of the reference image.

Although similar in terminology, the average shape and the average intensity charac
istics have different purposes. The average shape represents an avaragplailogical
variations. This is generally a well-understood concept. On the other hand, the aver
intensity is meant to average thesponse of corresponding tissues to the acquisition pe
rameters. Also, assuming Gaussian noise in each MR scan, the average intensity incre
the signal to noise ratio in the resulting model compared with individual scans.

The main contribution of this paper is the description of a fully automatic technique
obtain amaverage intensity and shapeage, producing thaverage model Mand to show
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that this model, up to an affine transformation, is stable with respect to the choice of
initial reference image and repeated applications of the algorithm (iterations).

The most similar work regarding average intensity atlases is that of Bookstein [20] w
created from nine MR scans a two-dimensional image representing the average intensi
the mid-sagittal plane. Thirteen manually identified landmarks in the mid-sagittal plane
each scan where matched with a reference image using the thin-plate spline interpolant |
The nine resampled images where then averaged to resultinto a morphometric average
Our method differs primarily by two aspects. First, as suggested by Bookstein [20], we m:
full use of the three-dimensionality of the scans to compute a three-dimensional aver
image. Second, our registration method is automatic and computes a dense deform:
field instead of an interpolated function based on 13 landmarks. This deformation identi
for each voxel of the reference the corresponding positions in the other scans. Wit
this process, every voxel of the reference can be thought of as a landmark automatic
determined in the other scans.

The work of the MNI group [8], where 305 three-dimensional MR scans were register
using translations, rotations, and scalings and averaged to build a statistical neuroanator
model, also relates to our work. We enrich this idea by proceeding further in using a Is
constrained type of deformation after the affine match to accommodate for local sh:
variations.

In the same vein, Woodst al. [13] describe a method that finds from a set of images
common space that preserves the average orientation, size, and affine shape of the gro
registering all possible pairs ofimages it contains. Averaging the images after affine mapy
to this common space produces an average intensity brain atlas in the average affine s
Their method is computationally very intensive as it requit@s— 1)/2 registrationsn
being the number of subjects in the group. The basic difference between this approach
the one by the MNI group is that this one finds the average affine space, whereas the |
method uses Talairach space.

The average shape concept is most similar to the beautiful work of the Brown a
Washington groups [14, 22], who have put together a framework in which the construct
of a template from a set of anatomies is proven to minimize the energy of the deformati
required to map it onto all the elements of that set. Our work complements theirs in tl
we provide quantitative measurements confirming their formulation, although we do 1
compute small deformations as is required for their proof. It should be noted that c
resulting model also includes average intensity information and that our respective gro
use different registration methods.

Le Briquer and Gee [12] have also developed a method that provides, for a given gr
of subjects, the mean shape and the modes of principal variation along with their amplitt
Their approach is set in a statistical framework and aims at deriving a shape model.
method differs in that we aim for the analysis of local information rather than global patter

The work presented here also relates to the methodologies of Sulas$l 6], Bookstein
[23], and Kendall [24], who compute average shapes modulo similarity or affine transforn
tions. We have not tried to strictly follow the theory developed in their works. Our intentic
was to conform to the idea of making an abstraction of differences between images du
first-order transformations and analyze residual variations. Our main contribution resi
in the characteristics used to build the average shape, that is, the image intensities inste
landmarks or crestlines. Again, this enables the computation of dense deformation fields
resenting variations everywhere in the MR scan, as opposed to interpolating transformat
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found using landmarks, lines, or surfaces. We believe this technique may find less a
rate matches in the close surroundings of the landmarks, but that it provides better ove
registration.

As will be shown, compared to these previous efforts, our method provides clearerima
with higher contrasts and sharper definitions of tissue boundaries. Most importantly,
provide numbers showing the convergence of the model toward the centroid of the image

The remaining sections of this paper are organized in the following manner. First,
detail the method used to construct the average model. We then present results showir
convergence of the method toward an average intensity and shape model and show the
of the choice of reference image. We conclude with a discussion on future research trg

2. METHODOLOGY

2.1. Registration

The work that follows assumes that each point in one image has a corresponding ec
alent in the others. It also assumes that a matching method which is able to find tt
correspondences and is capable of providing a vector field representing those relation:
is available. In theory, neither of these conditions is realized. That is, at a microsco
scale, there is not a one-to-one relationship between the brain cells of two individuals,
assuming there is, to this day, no algorithm has been able to find it. In practice however,
forming one brain so its shape matches that of another is conceivable and many algorit
realizing this process have been developed [21, 4, 25-27, 17, 13]. The procedure us
the following work is the demons method [28] using a complete grid of demons. We brie
detail it here and refer the reader to the original article for more information.

2.1.1. Evaluating shape differencedVhen applied to MR images, the demons algo-
rithm can be considered as an optical flow variant [29]. From this point of view, the 3
images to be registered are considered as a time sequence represehted bwhere
X = (X1, X2, X3) is @ voxel position in the image ands time. It computes forces by con-
straining the brightness of brain structures to be constant in time so that

di(x, t)
=0
dt

This leads us to the basic optical flow formulation (see [29] for details about the derivatic

3l (x, t)/at

v=—Vyl(X,t)——————,
X IVl (x, )12

which is the movement component in the direction of the brightness gradidiix, t) =
((@1(x,1)/9%q1), (Bl (x,t)/0x2), (a1 (X,1)/9%3)). For numerical stability reasons, when
Vil (X, t) is close to zero, the denominator of the above formula is modified to res
in the basic displacement formulation for the demons algorithm using a complete gric
demons,

al(x, t)/at

V=V g TGO + ot Dot

When||Vxl (X, t)]| =0 no displacement is computed.
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As with all optical flow formulations based on differential techniques, the problem he
resides in finding the components of the movement in the directions orthogonal to
gradient. Many regularization methods have been proposed [30], each with their stren
and weaknesses. The one proposed by Thirion is to apply a Gaussian filter to each o
three components af. This provides a smooth displacement field in a time efficient way
It is interesting to know that Bro-Nielsen and Gramkow [31] have shown that regularizil
the deformation field using a Gaussian filter approximates linear elasticity.

The method is iterative and makes use of a multiscale scheme which resolved the prot
of finding large deformations, a common problem with optical flow techniques and a ba
assumption in the formulation and implementation of the derivative filters.

2.1.2. Relaxing the intensity constrainle mentioned that the registration algorithm
assumes the same intensity for corresponding brain structures in the images to be regist
For all sorts of reasons, such as acquisition parameters or preprocessing, this may not t
case. To relax this constraint, a linear intensity correction is evaluated at each iteratiol
the registration procedure. It is obtained by finding the line that best fits the joint histogr:
of the two images (see Fig. 2). This line is obtained using linear regression and out
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FIG. 2. Intensity correction method.
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rejection. From experience, we know that such an intensity correction provides image
which boundary definitions are clearer and better matched.

2.1.3. Relevance of the resulting transformation the case of intersubject nonrigid
registration, quantifying the accuracy of a method is difficult. One could deform an ima
| using a known deformatiol® into |’, registerl with 1’, and compare the result of the
registration withD, but this comparison is biased by the wyis generated. For example,
since the demons algorithm produces a smooth deformation field, if the vectoraefe
to be generated randomly, the method is expected to perform poorly. Another method |
place landmarks in the images to register and evaluate differences between landmarks
registration (see, for example, [13]). No such study has been performed using the den
algorithm.

An approach which is a generalization of the previous one is to compare manual and
tomatic segmentation using segmentation propagation, the manual result serving as gr
truth (see, for example, [32]). We believe this approach may be better suited to evaluate
quality of high-dimensional transformations such as the ones obtained using the previo
described algorithm (typically 8 200° = 24 x 10° degrees of freedom). Such a study has
been performed previously by Dawaettal.[33] for the demons algorithm. To summarize
their work, contours of different brain structures, large and small, have been segmel
manually on nine MR images. One of these images was mapped to all eight other ima
Then, manual and propagated segmentations were compared. Their similarity index is
fined as two times the area encircled by both contours divided by the sum of the ar
encircled by each contour. This index ranges from zero to one, with zero indicating z
overlap and one indicating a perfect agreement between two contours. It is sensitive to
displacement and differences in shape and it is thus preferable to a simple area compal
The average similarity indices between the manual and automatic segmentations was
0.97, and 0.845 for the whole head, the cerebellum, and the head of the caudate, re:
tively. Compared with intrarater results of 0.97, 0.97, and 0.88, the difference in the me
similarity indices between two manual delineations and between the manual delineat
and the automatic segmentation method are statistically significant for the whole head
the caudate but not for the cerebellum. The authors put forth though that similarity indi
over 0.85 correspond to contours that are virtually indistinguishable and that a more rele
comparison should be performed using interrater manual results which are known to t
more discrepancies.

It should be pointed out that the demons algorithm does not explicitly track the transf
mation’s Jacobian to make sure its determinant is positive, so that in theory it is possibl
obtain a singular transformation. In our experience with MR data, this does not occur w
using a sigma of 1 voxel to define the Gaussian filter for the smoothing operation. Al
the algorithm matches intensities andlabal intensity correction is made over the whole
image. Hence, the transformed image is not an exact duplicate of the target. This is dt
the smoothness constraint applied to the displacement field which establishes a compro
between intensity resemblance and uniform local deformations at each iteration and tht
the final result.

2.2. Average Model Construction

The average model construction needs as input a reference ipagel a seS of N
imagesly, ..., Iy representing the group of subjects under consideration. The method ¢
be divided into six steps as follows:
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1. Thefirst step is the evaluation of global shape and intensity differences between
reference and each image of the set. Elastic registration betweserd |; provides vector
fields D; giving for each voxekg of | g the corresponding anatomical locatignin |; as
well as an intensity transformatidf; . An affine transformatior; that best approximates,
in a least squares sense, the corresponinig computed. Since we have correspondence
between anatomical points of theand| g that have the fornx; = D; (xr), we compute the
A by minimizing the distancg”, |x — A"}(Di(x))? (see, for example, [34] for a closed
form), where the summation is performed on the voxel positioniginorresponding to
cerebral tissuéds

2. In the second step, residual variations due to pure morphological differences
calculated. Elastic registration is performed betwkeand each; using the corresponding
A andIT; as initial transformation estimates. This provides the resulting matched imac
I/ as well as the residual vector fiel&ks.

3. The third step averages the producing a mean intensity imag_ewith the shape
of Ir.

4. The fourth step aims to produce the deformation presenting the shape variati
betweenl g and the average shape of the set elements after correction of affine differen
Since the residual deformatio® are all defined in the same anatomical space, that c
Ir, calculating their vectorwise averaﬁ(x):l/N ZiNRi(x) will provide the desired
deformation.

5. The fifth and final step consists of applying this average residual deformation
the average intensity image to obtain an average intensity and shape image represe
the anatomical average model. To avoid the cumbersome computation of the inverse
of a vector field, we use forward resampling [36] with mathematical morphology [37] 1
guarantee continuity.

Considering numerical errors due to the fact that automatic registration methods usu
perform better when images are closer to each other, all these steps may be repeate
replacingl g with M, thus constructing a model with a reference image closer to the centrc
of our set. Intuitively, this should reduce the mean registration error and provide a new mc
M’ closer to the theoretical solution.

In the next section we will further study this convergence with respect to the choice
the reference imaghkk and the number of iterations needed to achieve convergence.

3. RESULTS

The method is tested by computing four models using two reference inhagesd | g,
(see Figs. 3a and 3b) and two image satand S, each composed of five images (see
Table 1).

The 3D MR protocol provides coronal images obtained using a 1.5 Tesla SIGNA (Gene
Electric, Milwaukee, WI) whole body MR imaging system. One hundred and twenty fou
coronal T1-weighted images were obtained using a spoiled gradient echo (SPGR) p
sequence (TE9 ms, TR=34 ms, flip angle=45°). Two NEX acquisitions took 27 min
and 52 s. The field of view (FOV) of the images was 20 cm and each image refers t

1 These positions are obtained using an automatic method for brain segmentation similar to that of Brum
et al.[35]. From this point forward, all summations oveare assumed to be on the voxel positions obtained usinc
this algorithm.
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FIG. 3. Coronal slices from the two reference images,|@)and (b)lg,.

contiguous section of tissue of 1.6 mm thickness. The two acquisitions, as opposed to
gave increased contrast between gray and white matter and therefore better definitic
structure boundaries. The images showed no evidence of movement or chemical shift
facts, and partial volumizing effects were minimal. The acquisition time was well tolerat
by all subjects. The 25& 256 x 124 voxels of size 8 mmx 0.78 mmx 1.6 mm were
trilinearly interpolated to 20& 200x 198 to give cubic voxels of 1 mm side.

We analyze our results with regards to two factors. First, the iteration process is inv
tigated to see if convergence is achieved, and if so, the speed of the convergence
Second, we study the effect of changing the reference image. If the model is a true ave
of the image set, changing the reference should produce an identical model up to an a
transformation defined by the affine difference between references.

In our evaluation procedure, three metrics are used. The first determines the ave
distance (AD) from an imagkto the elements of a s&

I 1 )
AD(I.9) = | =D 1 D Ix=ROIZ
X i=1

where R, is the residual deformation fror to theith element ofS, n is the number of
voxels characterizing cerebral tissues &hdepresents the number of elementsSin

TABLE 1
References and Image Sets Used to Build
the Different Models

Model Reference Image set
My I, S
Mgy I, S
Miz I, S
Maz I, S




200 GUIMOND, MEUNIER, AND THIRION

The second is the root mean square norm (RMSN) which supplies information regarc
the shape variation expressed by a deformation field

RMSN(D) = \/% > lIx =D,

wheren is the number of voxels characterizing cerebral tissues in the reference from wh
D was obtained.

The third provides a measure of brightness disparity between two imkagasd | ;. It
is the normalized intensity difference (NID) of the images’ intensities at correspondil
locations,

) — 1 2

An easy way to interpret this formula is to note thakjit= I;, NID(l;, 1;) =0; if 1; =21;,
NID(li, I;)=1;if I; =21;, NID(l;, 1;) =0.5; and so on.

3.1. Effect of Iterating

To evaluate the effect of iterating, we construct the four models repeating the process
times using the result of the previous iteration as the reference image. We will desigr
the modelMjy, obtained with reference imade and setS, computed at théth iteration
by Mj('k) For conveniencel,vlfﬁ) will be identified to the average intensity image having
the shape of ;. This represents a sort of iteration after applying only the first three ste
described in Section 2.2.

Four measures were computed:

AD(M]-(L), S): The average distance from the reference of the current iteration to
the elements of the set. ‘

RMSN(IQ(J-'Q): The shape variation expressed by the residual deformation Fﬁ%d
whenMJ(ik) is used as the reference.

RMSN(DEL)): The shape difference between models computed at successive iteratic
DS} is the deformation obtained by registerintfy with M{ ™.
NID(M{Y, M{): The brightness disparity between models obtained at success

iterations.

If the models computed tend toward the centroid of the image set, the first meas
should diminish. This process is depicted in Fig. 4a: as the model evolves toward the ce
(dotted line), the average distance to the image set elements decreases. The second an
measures, representing the shape evolution of the model (see Fig. 4b), should tend to
zero. Finally, the fourth value should also decrease to zero since it represents the bright
differences between successive models.

The results of these calculations on the four models are presented in Fig. 5. Note
the iterations range up to 4 and not 5 since we compare models computed at itdratic
andi + 1. We remind the reader that moddslé(k)), that is, models before the first iteration,
characterize only average intensities and not average shapes.

From Fig. 5a, we know the average distance from the references to the image set elen
is between 4.62 and 5.51 mm and reduces to a range of 2.88 to 3.36 mm. Note thal
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FIG. 4. Evolution of the model (circles) toward the center of the image set (squares). (a) The average dist:
of the model to the image set element decreases. (b) The distance between successive models diminishes.

average distances for the models built using the same image set are very close (0.0€
for both models), while the distance for the models built using different image sets is mt
higher (in the range of 0.30 to 0.48 mm, depending on which models are compared). T
is easily explainable by the fact that different small image sets will tend to have differe
average distances from their centroid. Compared to these values, the variation bety
successive models (see Figs. 5b and 5c), which is in the range of 0.41 to 0.52 mm, se
minor. Figure 5d presents numbers showing the brightness difference between succe
models diminishes rapidly to almost 0, increasing our belief that models do not evo
significantly after the first iteration.

3.2. Effect of the Reference

If the models computed are equal up to an affine transformation, changing the refere
image should produce a model identical to the previous one after removing their aff
differences. To verify this characteristic, we performed#iimeregistration between models
built using the same image sdmgl) is registered witH\/Ifl) to provide the imag(M’gi and
MSZ) with Mfz) to result inM’g%.

Two measures were used:

RMSN(D{): The shape variation fromi1{) to M’$). D!’ is the deformation obtained
by registering the two images.
NID(M), M’{): The brightness disparity between the two models.

Results are shown in Figs. 6a and 6b, respectively. We note that shape variation betv
the models reduces from about 3.4 to 0.9 mm. This last value is close to the differe
between successive models which we know from Figs. 5b and 5c to be approxima
0.4 mm. The brightness disparity also diminishes rapidly and does not change drastic
after the first iteration. From these results, one can see that the models built using diffe
reference images are very close, but are not identical. We believe the differences are
to errors in our registration method and to the resampling procedure applied to the mo
to put them in the same affine space, which tends to smooth the image. This last arti
is not present when comparing models obtained from successive iterations as we dic
the results of Fig. 5d. Still, the average distance between models is less than the resol
of the image, and both the average distance and the normalized intensity difference ev
only slightly after the first iteration.

Figures 7 to 10 present some results obtained during this process. In Fig. 7 the averac
tensity images corresponding to the reference images of Fig. 3 are presented. They bas
have the same shape as their respective reference image and their intensities corres
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FIG. 7. Average intensity images built using reference imagegFig. 3a) andl, (Fig. 3b) and the same
image set5. They were obtained during the first iteration of the model construction method. Note how the sig
to noise ratio is increased while contrast is preserved. (a) Average intensity intageusing| R, @and$S, during
the first iteration. (b) Average intensity imag?built usinglr, and$, during first iteration.

to the average of the image s&t Note how the signal to noise ratio is increased while
contrastis preserved. These average intensity images are deformed using the correspc
average residual deformations to provide the average models of Fig. 8. The average rr
Méll) is then registered witlh/lﬁ) using an affine transformation to set it in the same affin
space. This result is presented in Figs. 9a and 9b. The same procedure has been perf
for all five iterations for both image se& and S,. The resulting models for the fifth it-
eration using image s& are also shown in Figs. 9c and 9d. In Fig. 10, slices are take
where there is more variability in the cortex area and thus where our registration met
finds correspondences in which we have less confidence. As can be seen, in these re
the model image is less clear and the contrast between gray and white matter is less
nounced.

4. DISCUSSION

Figure 5 presents numbers showing that our method constructs average models well
resenting the average intensity and shape of our image sets. In particular, Fig. 5a show:

FIG. 5. Impact of the iteration process when computing the models. Note that the iterations range up 1
and not 5 since we compare models computed at iteraitiandi + 1. We remind the reader that “modeIM’fE),
that is, models before the first iteration, characterize only average intensities and not average shapes. (a) Av
distance to the reference of the current iteration. (b) Shape variation of the reference for the current itera
(c) Shape difference between models computed at successive iterations. (d) Brightness disparity between n
computed at successive iterations.

FIG. 6. Influence of the reference on the model computed. (a) Shape variation bekM@eand M'%).
(b) Brightness disparity betweev) andM’§).

FIG. 12. (a) Coronal, (b) sagittal (left hemisphere), and (c) axial sections of the probabilistic atlas. She
variability is superimposed in red (see text for more details). Images are shown using the radiological conven
i.e., patient’s left side is on the right side and vice-versa.
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FIG.8. Average model1( (a) andMS} (b) computed using reference imadas (Fig. 3a) and g, (Fig. 3b)
and the same image s8t. They were build from the average intensity images oiFigs. 7a and 7b respective
(c) and (d) are the corresponding grids deformed by the average residual deforRﬁ%lt'amd R(zof, respectively.

the average distance from one image to the set elements varies between 4.62 and 5.5
This distance reduces and stays between 2.88 and 3.36 mm after the firstiteration. Figur
and 5cillustrate a minor shape evolution of the models at each iteration. Furthermore, Fig
allows us to claim that the visual aspect of the models changes only minimally. This lead:
to the conclusion that the models constructed are different, but equivalent from a pract
point of view. That is, we believe the model slowly wanders around the optimum solutic
Their intensity difference is practically null, and their shapes, although different, all ha
the same average distance to the other elements of the set. Hence, we believe one o
iterations are sufficient to build representative average models.

The reader should appreciate the low noise, high contrast, and high quality of the mot
produced in Figs. 8-10. They present models built using different reference images anc
same image set. The ventricular shape bias introduced Lgiigminimal if not null. Also,
Fig. 6 shows that the models built using different references seem to converge toward
same solution. Their shape difference of about 0.9 mm presented in Fig. 6a is low comp:
to the average distance between the models and the set elements, which is in the ran
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FIG.9. Average models computed using reference imaggeéFig. 3a) and g, (Fig. 3b) and the same image
setS. A coronal slice of (@M%Y, (b) M'Y), (c) ME), and (d)M'§). (b) and (d) have been transformed into the
same affine space as (a) and (c), respectively, and can therefore be compared directly.

2.881t0 3.36 mm and just over the distance between successive average models which \
from 0.30 to 0.48 mm. Figure 6b also presents a low disparity between the different mod
intensities.

If familiar with the work of Bookstein [20] or the MNI group [8], the reader will appre-
ciate the high contrast and visual quality of the images produced, although due in pal
the smaller number of images used. To better visually appreciate the gain in using h
dimensional volumetric maps (208 198 x 3=2.376x 10’ degrees of freedom) instead
of affine transformations (12 degrees of freedom) during registration, Fig. 11 presents cc
sponding slices of the mod#l 11 built using the method presented in this paper and the or
built restraining registration to affine transformations. Note that Figs. 11a—11c, obtai
using the method described above, provide higher contrasts and sharper definitions of t
boundaries than Figs. 11d-11f, which were obtained using affine registration only.

In the event that bad matches occur during registration, the model would reflect 1
by having larger variances in deformation and/or intensity. The image obtained and
corresponding statistics regarding deformations and intensities would not reflect nor
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FIG. 10. Average models computed using reference imageqFig. 3a) andlg, (Fig. 3b) and the same
image seSS,. (a) A coronal slice of (aM{J and (b)M'S). (b) has been transformed into the same affine space a
Fig. 9c and can therefore be compared directly. Compared with Fig. 9, these slices are taken where there is
variability in the cortex area and thus where our registration method finds correspondences in which we have
confidence. As can be seen, in these regions the model image is less clear and the contrast between gray an
matter is less pronounced.

variations, but to a certain extent reflect normal variatigitisin our registration framework

Itis our belief that the models obtained in this paper are intricately linked to our modeling
the registration problem. Though cross-validation of registration techniques’ results rep
mutually coherent matches [38], average variations of 3 to 4 mm have been observed in

FIG. 11. Corresponding slices d¥1;; using affine registration ((d), (e) , (f)) instead of elastic registration
((@), (b), (c)). (a) Coronal slice, elastic registration, (b) sagittal slice, elastic registration, (c) axial slice, el
tic registration, (d) coronal slice, affine registration, (e) sagittal slice, affine registration, (f) axial slice, affi
registration.
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study. These figures are too large to give significance to our models’ statistics using o
registration methods.

Although beyond the scope of this article, we present in Fig. 12 preliminary results o
probabilistic atlas built using the information gathered during the constructibh pfThis
figure presents slices of the average model on which information about shape variabili
superimposed in red. This variability is computed as follows: we calculate the voxelw
covariance matrix of the residual deformation fielsobtained from the registration of
each element o, with M;;. The determinant, or the product of the eigenvalues, of each
these matrices is computed. The resulting values can be interpreted as probabilistic volt
(see [39] for more detailed geometric interpretations of this measure). Hence, for a gi
voxel, a large volume corresponds to a large variability of the positions of correspond
voxels found inS;. This volume has been normalized and converted to a red intensity val
added to the MR image.

We remind the reader that this probabilistic atlas was built using only five normal subje
and hence does not reflect the extent of normal variability that is to be found in a lar
population. Nonetheless, we point out that high variability was found in the cortical regic
which is known to present large shape variations. There also seems to be more variat
in the left hemisphere than in the right.

We are presently working on the evaluation of the number of subjects needed to fi
represent the extent of variations in a normal population. Further interpretations of
corresponding probabilistic atlas will follow this work.

5. CONCLUSION

We have presented a completely automatic method to build average anatomical ma
of the human brain using a set of MR images. To this end, brain shape variations betw
subjects were identified. Differences due to linear transformations were excluded, resul
in the quantification of pure morphological differences. The result is an average inten:
and shape image representative of the characteristics of the image set elements used 1
construction. Furthermore, we have shown that this model corresponds to the centroid o
image set and does not depend on the reference image used for its construction. This sta
is very important to ensure the efficiency and usefulness of our method. The coupling
such a high quality model with statistical information regarding normal deformations, st
as the one presented in Fig. 12, in the work of Thompson and Toga [18], or of the Bro
and Washington groups [14, 22], could enrich the significance of statistical tests by adc
intensity information, useful, for example, in detecting gliosis in T2 MR images, and wou
supply an important tool in the analysis of normal anatomy.

6. APPENDIX

Nomenclature

A Affine component oD;

D Deformation field resulting from elastic registration between any two
imagesl; andl;

Dj Deformation field resulting from elastic registration between a reference

imagelr and an imagé;
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DY} Deformation obtained by registering}) with M{"*
I Any image

li A particular image in a seb

IR Any reference image

IR A particular reference image

I’ Imagel after application of the deformatidn

I/ Imagel; after application of the deformatidp;
A voxelwise average intensity image

I

M Any average model

Mk Average model obtained with reference imdgand setS,
M]('k) Mk at theith iteration

N Number of images in a s&

n Number of voxels characterizing cerebral tissues in an image
R Residual component d;

R A vectorwise average deformation field

RY) RwhenM{) is used as the reference

S Any set of images

S A particular set of images

XR A voxel position in a reference imade

Xi A voxel position in an imagé;

AD Average distance

NID Normalized intensity difference
RMSN Root mean square norm

ACKNOWLEDGMENTS

Dr. Neil Roberts from the Magnetic Resonance & Image Analysis Research Center (MARIARC) of Liverpc
University provided the MR images used in this study. Part of this work was funded by the Natural Sciences
Engineering and Research Council of Canada (NSERC) and the Ministefediedition du Québec (MEQ).

REFERENCES

1. J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, A probabilistic atlas of the human br:
Theory and rationale for its developmeNguroimage2, 1995, 89-101.

2. J. Talairach and P. Tournoup-Planar Stereotaxic Atlas of the Human Braithieme Medical, New York,
1988.

3. G. Schaltenbrand and W. Wahréilas of Stereotaxy of the Human Brain, Thieme, Stuttgart, 1977.

4. R. Bajcsy and S. Kovacic, Multiresolution elastic matchi@gmput. Vision Graphics Image Procegs,
1989, 1-21.

5. T. Greitz, C. Bohm, S. Holte, and L. Eriksson, A computerized brain atlas: Construction, anatomical cont
and some application§, Comput. Assisted Tomograply, 1991, 26-38.

6. D. Lemoine, C. Barillot, B. Gibaud, and E. Pasqualini, An anatomical-based 3D registration system
multimodality and atlas data in neurosurgery,Liecture Notes in Computer Sciendé®l. 511, pp. 154—
164, Springer-Verlag, Berlin, 1991.

7. K. H. Hdhne, M. Bomans, M. Riemer, R. Schubert, U. Tiede, and W. Lierse, A 3D anatomical atlas basec
a volume modellEEE Comput. Graphics Appl2(4), July 1992, 72—-78.

8. A.C.Evans, M. Kamber, D. L. Collins, and D. Macdonald, An MRI-based probabilistic atlas of neuroanaton
in Magnetic Resonance Scanning and Epilef88yShorvon, D. Fish, F. Andermann, G. M. Bydder, and



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

AVERAGE BRAIN MODELS 209

H. Stefan, Eds.), NATO ASI Series A, Life Sciences, Vol. 264, pp. 263-274. Plenum Press, New Yo
1994.

. F. L. BooksteinFunctional Neuroimaging, Chap. 10, Academic Press, San Diego, 1994.
10.

G. Christensen, M. I. Miller, and M. W. Vannier, A 3D deformable magnetic resonance textbook based
elasticity, inSpring Symposium: Applications of Computer Vision in Medical Image Processing, Stanfo
CA, March 1994, American Association for Artificial Intelligence.

R. Kikinis, M. E. Shenton, D. V. losifescu, R. W. McCarley, P. Saiviroonporn, H. H. Hokama, A. Robatin
D. Metcal, C. G. Wible, C. M. Portas, R. M. Donnino, and F. A. Jolesz, A digital brain atlas for surgic:
planning, model-driven segmentation, and teachlB&E Trans. Visualiz. Comput. Graphi@{3), 1996,
232-241.

L. Le Briquer and J. C. Gee, Design of a statistical model of brain shapeo@eedings of the Information
Processing in Medical Imaging Conference (IPMI'97), Vermont, 1@7%5. Duncan and G. R. Gindi, Eds.),
Springer-Verlag, Berlin/New York, 1997.

R. P. Woods, S. T. Grafton, J. D. G. Watson, N. L. Sicotte, and J. C. Mazziotta, Automated image registra
li. intersubject validation of linear and nonlinear modéIsZomput. Assisted Tomograp?®, 1998, 153—-165.

U. Grenander and M. I. Miller, Computational anatomy: An emerging disciplueyt. Appl. Math56(4),
December 1998, 617—694.

P. M. Thompson, D MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, Detection ¢
mapping of abnormal brain structure with a probabilistic atlas of cortical surfdcegSpmput. Assisted
Tomography21(4), 1998, 567-581.

G. Subsol, J.-P. Thirion, and N. Ayache, A scheme for automatically building three-dimensional morphome
anatomical atlases: Application to a skull atleedical Image Anal2, 1998, 37-60.

J. C. Gee, D. R. Haynor, L. Le Briquer, and R. K. Bajcsy, Advances in elastic matching theory and
implementation, inConference on Computer Vision, Virtual Reality and Robotics in Medecine & Medice
Robotics and Computer Aided Surgery (CVRMed-MRCAS’97), Heidelberg B98ihquin, R. Kikinis, and

S. Lavallee, Eds.), Springer-Verlag, Berlin/New York, 1997.

P. M. Thompson and A. W. Toga, Detection, visualization and animation of abnormal anatomic structure \
a deformable probabilistic brain atlas based on random vector field transformafiedsal Image Anal.
1(4), 1997, 271-294.

A. Guimond, G. Subsol, and J.-P. Thirion, Automatic MRI database exploration and applidatierrsat. J.
Pattern Recognition Artificial Intelligenckl(8), 1997, 1345-1365.

F. L. Bookstein, Thin-plate splines and the atlas problem for biomedical imag€spdeedings of the
Information Processing in Medical Imaging Conference, Wye, United Kingdom, JulA9@1F. Colchester
and C. J. Hawkes, Eds.), Lecture Notes in Computer Science, Vol. 511, pp. 326—-342, Springer-Verlag, Be
1991.

F. L. Bookstein, Principal warps: Thin-plate splines and the decomposition of deformaE&#s,Trans.
Pattern Anal. Mach. Intelligenc&l(6), 1989, 567-585.

M. I. Miller et al., Statistical methods in computational anatoSigtist. Methods Medical Re§, 1997,
267-299.

F. L. Bookstein, Shape and the information in medical images: A decade of the morphometric synthe
Comput. Vision Image Understandi6g, 1997, 97-118.

D. G. Kendall, A survey of the statistical theory of shaftist. Sci4(2), 1989, 87-120.

G. Christensen, R. D. Rabbitt, and M. I. Miller, 3D brain mapping using a deformable neuroan@tymsy,
Medicine Biol.39, 1994, 608-618.

D. L. Collins, T. M. Peters, and A. C. Evans, An automated 3D non-linear image deformation procedure
determination of gross morphometric variability in human brainigualisation in Biomedical Computing,
Rochester, October 199&. A. Robb, Ed.), SPIE Proceedings, Vol. 2359, pp. 180-190.

P. Thompson and A. W. Toga, A surface-based technique for warping 3-dimensional images of the b
IEEE Trans. Medical Imaging5, 1996, 1-16.

J.-P. Thirion, Image matching as a diffusion process: an analogy with Maxwell's demMedgal Image
Anal.2(3), 1998, 243-260.



210 GUIMOND, MEUNIER, AND THIRION

29
30

31.

32.

33.

34.

35.

36.

37.
38.

39.

. B. K. P. Horn and B. G. Schunck, Determining optical fléwjficial Intelligencel7, 1981, 185-203.

. J.L.Barron, D. J. Fleet, and S. S. Beauchemin, Performance of optical flow techimgeiest. J. Comput.
Vision12, 1994, 43-77.

M. Bro-Nielsen and C. Gramkow, Fast fluid registration of medical imageRrdoeedings of the 4th In-
ternational Conference Visualisation in Biomedical Computing (VBC’'96), Hamburg, Germany, Septe
ber 22-25, 199€K. H. Hohne and R. Kikinis, Eds.), Lecture Notes in Computer Science, Vol. 1131, py
267-276, Springer-Verlag, Berlin, 1996.

J.W. Haller, A. Banerjee, G. E. Christensen, M. Gado, S. C. Joshi, M. I. Miller, Y. Sherline, M. W. Vannier, a
J. G. Csernansky, Three-dimensional hippocampal MR morphometry with high-dimensional transforma
of a neuroanatomic atlaRadiology202, 1997, 504-510.

B. M. Dawant, J.-P. Thirion, F. Maes, D. Vandermeulen, and P. Demaerel, Automatic 3D segmentatio
internal structures of the head in MR images using a combination of similarity and free form transformatio
in Medical Imaging 1998: Image Processing (MI'98) San Diego, February 23-26, #998. Hanson, Ed.),
SPIE Proceedings, Vol. 3338, pp. 545-5Bdernational Society for Optical Engineering.

O. FaugerasThree-Dimensional Computer Vision: A Geometric ViewpdififT Press, Cambridge, MA,
1993.

M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewine, Automatic detection of brain contol
in MRI data setslEEE Trans. Medical Imaging2(2), 1993, 153-166.

A. Guimond, J. Meunier, and J.-P. Thiriokyerage brain models: A convergence stuigchnical Report
3731, Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, France, July 1¢
[Available at http://www.inria.frf/RRRT/RR3731.html]

R. C. Gonzalez and R. E. WoodBigital Image Processing, Addison-Wesley, Reading, MA, 1992.

J.-P. Thirion, G. Subsol, and D. Dean, Cross validation of three inter-parients matching meth=islisa-

tion in Biomedical Computing (VBC'96), Hamburg, Germany, September #Q%6. Hohne and R. Kikinis,
Eds.), Lecture Notes in Computer Science, Vol. 1131, pp. 327-336. Springer-Verlag, Berlin, 1996.

K. Fukunagalntroduction to Statistical Pattern Recognition, 2nd ed., Chap. 2, pp. 11-50, Academic Pre
London, 1990.



	1. INTRODUCTION
	FIG. 1.

	2. METHODOLOGY
	FIG. 2.

	3. RESULTS
	FIG. 3.
	TABLE 1
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.

	4. DISCUSSION
	FIG. 11.
	FIG. 12.

	5. CONCLUSION
	6. APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

