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a b s t r a c t

Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue prop-

erties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion

measures. This estimation is achieved by acquiring multiple images with different acquisition parame-

ters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to

the image intensities. Image registration is often necessary to compensate for misalignments due to sub-

ject motion and/or geometric distortions caused by the acquisition. However, large differences in image

appearance make accurate image registration challenging. In this work, we propose a groupwise image

registration method for compensating misalignment in qMRI. The groupwise formulation of the method

eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method

minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that

intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowl-

edge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both

real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1

and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain,

and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acqui-

sition model. The method is compared to a mutual information-based pairwise registration method and

four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of

the precision of the estimated qMRI parameters, overlap of segmented structures, distance between cor-

responding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method

performed better than or equally well as competing methods, while avoiding the need to choose a ref-

erence image. It is also shown that the results of the conventional pairwise approach do depend on the

choice of this reference image. We therefore conclude that our groupwise registration method with a

similarity measure based on PCA is the preferred technique for compensating misalignments in qMRI.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Quantitative magnetic resonance imaging (qMRI) is a technique

hat enables the estimation of tissue properties from a series of
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mages acquired with different imaging parameters or acquired at

ultiple time points after injection of a contrast agent. Because

hese tissue properties can be indicators of the biological state of

he tissue and their change during disease, their precise and ac-

urate estimation is important. Examples of such tissue proper-

ies are the relaxation parameters T1 and T2, the mean diffusivity

MD), the apparent diffusion coefficient (ADC) and Ktrans, a mea-

ure of capillary permeability. They are estimated by fitting a low-

imensional signal model (qMRI model) to the acquired MR im-

ges, see e.g. (Tofts, 2003). Typically five to over a hundred images
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Fig. 1. A scheme showing the concept of qMRI. On the top there are three contrast-

varying images of a heart. The red dots indicate one specific pixel location x in each

of the images and their intensities are plotted in the graph below the images. A

model m(θ) is fitted to the pixel intensities, where θ contains the tissue properties

of interest. The model is fitted for each pixel in the image so that a map of the

element(s) in θ can be created. Such a map, showing T1, is shown on the right of

the graph. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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are acquired, depending on the tissue properties of interest. Fig. 1

illustrates the concept of qMRI.

The fitting procedure assumes an anatomical correspondence

between the images in the acquired series. However, due to pa-

tient motion and/or geometric distortions caused by the acquisi-

tion this correspondence can be lost, which may lead to erroneous

parameter estimation, especially at tissue boundaries. Corrections

during acquisition, such as gating or breath-holding, do not always

give the desired effect and can significantly increase the acquisi-

tion time. Another solution is to align the images prior to fitting

the qMRI model. This alignment can be achieved with image reg-

istration techniques. However, image registration for qMRI imposes

two main challenges: firstly, the contrast is different for each of the

images in the acquired series, complicating registration based on

the image intensities. Secondly, often more than two images need

to be registered in the context of qMRI. In this second case one

can choose a pairwise registration approach in which all images

are registered to a chosen reference image. To deal with contrast

changes that occur in a series of qMRI images the pairwise ap-

proach is commonly used with a metric based on mutual informa-

tion (MI), because this metric is robust against intensity changes in

the images (Bron et al., 2013; Mangin et al., 2002; Guyader et al.,

2014). However, a major disadvantage of this approach is that the

choice of reference image will influence the result of the registra-

tion, which we will demonstrate in this paper. To circumvent the

need to choose a reference image one can use a so-called group-

wise registration approach. In such an approach all images are si-

multaneously registered to a mean space. Moreover, with this ap-

proach the information of all images is taken into account during

the registration. This improves consistency over a pairwise regis-

tration approach, as shown in Metz et al. (2011) for groupwise reg-

istration of dynamic CT images.

We distinguish two categories of registration methods for qMRI

data, discussed in the following two paragraphs: (a) model-based

methods that use the qMRI model to register the images (Xue

et al., 2012; Buonaccorsi et al., 2007; Andersson and Skare, 2002;

Hallack et al., 2014; Bhushan et al., 2011), and (b) data-driven

methods, which do not rely on the qMRI model (Hamy et al., 2014;

Melbourne et al., 2007).

The model-based registration method proposed in Xue et al.

(2012) for the registration of T1 data, uses the fitted parameters

of the qMRI model to generate reference images for all images in
he dataset. The registration is done in a pairwise fashion using

cross-correlation similarity metric. A similar approach was used

y Buonaccorsi et al. (2007) for dynamic contrast-enhanced (DCE)

mages. Andersson and Skare (2002) and Hallack et al. (2014) di-

ectly minimize the residual error of the qMRI model fit. For the

egistration of DCE images (Bhushan et al., 2011) propose to max-

mize the joint posterior probability between the intensities esti-

ated by the model and the true data. All these approaches elim-

nate the requirement to choose a reference image and are robust

o the appearance differences in the image. However, these model-

ased methods assume that the images adhere exactly to the qMRI

odel, which is not always true in all structures that are present

n the images due to noise and acquisition artifacts or when the

odel is too simple to represent the image intensities. For exam-

le, the DT model may not fully describe the signal in all voxels

f the brain due to the presence of multiple fiber orientations, as

hown by Behrens et al. (2007) and Jeurissen et al. (2013).

Data-driven methods for qMRI registration have been proposed

y Hamy et al. (2014) and Melbourne et al. (2007). Hamy et al.

2014) proposed robust data decomposition registration for regis-

ering DCE data. With the assumption that the low rank compo-

ents are free from local contrast changes or artefacts, they use a

parse and low-rank decomposition and register the low-rank com-

onents to the mean of all low-rank components in the current

esolution. Melbourne et al. (2007) proposed a progressive prin-

ipal component registration for DCE data. This method registers

he series of images to an artificial series, which is generated from

he first principal components of the original images. The registra-

ion is repeated and at each iteration a new series is generated and

ore principal components are added in the reconstruction.

Groupwise registration methods, not specifically developed for

he registration of qMRI data, have been proposed by Liu et al.

2014), Miller et al. (2000), Metz et al. (2011), Wachinger and

avab (2013), and Bhatia et al. (2007). Liu et al. (2014) use a

parse/low-rank decomposition, similar to Hamy et al. (2014), to

egister brain images between subjects, with the assumption that

he low-rank components are free from lesions and pathologies.

iller et al. (2000) proposed a method based on voxel-wise en-

ropy. While this method is robust against intensity variation,

MRI acquisitions often have few measurements, making it diffi-

ult to estimate a well-defined probability density function, which

s needed for entropy calculation. Metz et al. (2011) proposed a

roupwise dissimilarity metric based on voxel-wise variance, im-

licitly assuming small intensity differences between the images.

ue to the large intensity variations in qMRI it is not expected

hat this method is suitable for qMRI applications, however we in-

estigate if this is indeed the case. Wachinger and Navab (2013)

roposed a sum of accumulated pairwise estimates (APE), such as

he sum of normalized correlation coefficients of all possible im-

ge pairs in the series, as a similarity metric. Even though this

ethod has not yet been validated for qMRI data, it is designed

o align images with different contrasts. Bhatia et al. (2007) pro-

osed a groupwise extension of the pairwise mutual information

egistration approach, in which the sum of the mutual informa-

ion between the voxel-wise mean of all images and each image is

aximized. A downside of such a metric for qMRI is that contrast

t edges may be reduced after computing the mean image, due to

he large intensity differences among the images.

In this paper we propose a generic data-driven groupwise reg-

stration approach which by design is suitable for a wide range of

MRI applications without explicitly requiring the applicable qMRI

odel. In our approach we exploit the fact that in qMRI the in-

ensity changes according to a low-dimensional acquisition model.

hen the images are not aligned, the complexity of the data is

ncreased, i.e. the data can no longer be described by the acqui-

ition model. We propose two dissimilarity metrics based on this
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rinciple. These metrics use PCA to quantify the amount of mis-

lignment in the qMRI series. Because of the groupwise formula-

ion of the registration, the need to choose a reference image is

liminated. We evaluated the generic applicability of the method

n five different challenging applications of qMRI: T1 mapping in

porcine heart, combined T1 and T2 mapping in carotid arteries,

DC mapping in the abdomen, diffusion tensor mapping in the

rain and dynamic contrast-enhanced mapping in the abdomen. As

he groupwise approaches of Wachinger and Navab (2013), Bhatia

t al. (2007), and Metz et al. (2011) have potential for qMRI data

e use them as reference methods. The model-based approach by

.g. (Hallack et al., 2014) is implemented for T1 mapping and will

e used as a reference method for this application. Finally we also

ompare our method to the commonly used MI-based pairwise

egistration approach.

Preliminary results of this registration approach were presented

t the MICCAI workshop on Computational Diffusion MRI and Brain

onnectivity, Japan 2013 (Huizinga et al., 2013), and at the Work-

hop on Biomedical Image Registration, London 2014 (Huizinga

t al., 2014). In this work, we considerably expand previous stud-

es, and include the following new elements:

• a novel version of the dissimilarity metric, free of any user-

defined parameters;
• an extended range of qMRI applications on which the methods

are evaluated;
• quantitative evaluation of registration accuracy based on man-

ually annotated landmarks, overlap of manual segmentations,

and smoothness of the deformation field; and
• comparison to a larger variety of reference registration

methods.

. Methods

.1. Quantitative magnetic resonance imaging

In a qMRI examination multiple images are acquired in the

ame subject. Let Mg(x) for g ∈ {1 . . . G} be a series of G images and

a 2D or 3D spatial coordinate. The intensity at x for each image

g is predicted by a low-dimensional qMRI model mg:

g(x) = mg(θ(x)) + ε(x), (1)

here θ is a �-dimensional vector with tissue properties and ε is

he noise at coordinate x. In our applications, the number of tissue

roperties � ranges from three to seven and � < G, which is why

e call the qMRI model low-dimensional. Each qMRI application

ollows a different model mg. An example of such a qMRI model

g is the modified Look-Locker inversion recovery model proposed

y Messroghli et al. (2004):

g(θ) = |A(1 − Be−TIg/T ∗
1 )|, (2)

here θ = (A, B, T ∗
1
) and TIg the inversion time for image Mg. The

arameter of interest, T1, is calculated using T1 = T ∗
1 (B − 1). For

his specific model � = 3, as θ contains three parameters. The

unctions mg that are used for the experiments in this paper are

resented in Section 3.

.2. Registration frameworks: pairwise and groupwise

Prior to estimating θ the images Mg need to be registered. Due

o motion and/or geometric distortions caused by the acquisition

orrespondence between the images is lost, i.e. a spatial coordinate

does not correspond to the same anatomical location in each of

he images. In the pairwise registration approach, one reference

mage MR(x) is chosen and all other images Mg(x) for g �= R are

egistered to M (x). In our registration method, the transformation
R
s modeled by a set of transform parameters μ. For each image

g(x) there is a transformation Tg(x; μg). The pairwise registration

s formulated as the minimization of a dissimilarity metric D with

espect to μg:

ˆ g = arg min
μg

D(μg), (3)

hich is repeated for all g �= R. D measures the dissimilarity of

R(x) and Mg(Tg(x; μg)).

In the groupwise registration framework the images Mg(x) for

ll g are registered simultaneously to a mean space. We formulate

roupwise registration as the minimization of a dissimilarity met-

ic D with respect to μ:

ˆ = arg min
μ

D(μ), (4)

here μ is a vector containing all μg. Here, D measures the dis-

imilarity of all transformed images Mg(Tg(x; μg)) with respect to

ach other. The parameters μg are simultaneously optimized for

ll g.

.3. Proposed dissimilarity metrics

We present two novel groupwise dissimilarity metrics. Let the

mages Mg be represented as columns of an N × G matrix M,

here N is the number of voxels in one image Mg. A row of M can

e considered as a datapoint in a G-dimensional space. Note that

hen Mg is noise-free for all g, these datapoints lie in a – possi-

ly non-linear – �-dimensional subspace, where � is the number

f free qMRI model parameters. Fig. 2a shows an intensity scat-

er plot of three images generated using a one-dimensional (� = 1)

on-linear model: mg(θ) = 1 − e−at , where θ = a. We see that the

oints lie on a curved line, i.e. a non-linear �-dimensional sub-

pace. Fig. 2b illustrates the effect of a small misalignment: the

ntensity scatter plot becomes more dispersed.

The correlation matrix of the data points in M is defined as:

= 1

N − 1
�−1(M − M)T(M − M)�−1, (5)

here � is a diagonal matrix with the standard deviations of each

olumn of M as diagonal elements and M is a matrix with in each

lement of that column the column-wise average of M. The dimen-

ion of the subspace can be estimated by an eigenvalue decompo-

ition of K i.e., by a PCA. The key idea behind the proposed dis-

imilarity metric is that, when motion is present in the images,

he data no longer adheres to the presumed qMRI model and the

igenvalue spectrum of K changes. We choose to perform PCA on

he correlation matrix K, instead of the covariance matrix, to be

nsensitive to arbitrary intensity scaling between images. Fig. 3a

hows the eigenvalue spectrum of K for an aligned set of synthetic,

oise-free images, created with the qMRI model of Eq. (2), and the

eformed set of images (Fig. 3b). We can observe that once the

mages are deformed, the higher eigenvalues increase. Our method

ims to transform the images Mg such that the eigenvalue spec-

rum of K approaches the spectrum of an aligned set of images.

Let λj be the jth eigenvalue of K, with λ j > λ j+1, i.e. the eigen-

alues with a lower index have a higher value. The first dissimi-

arity metric we propose is defined as the difference between the

um of all eigenvalues (which is equal to the trace of K, which is

qual to the constant G) and the sum of the L highest eigenvalues:

PCA(μ) =
G∑

j=1

K j j(μ) −
L∑

j=1

λ j(μ) = G −
L∑

j=1

λ j(μ), (6)

here the dependence on μ has been made explicit to clarify

hat K (and thus λj) is computed based on the deformed images
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Fig. 2. Scatter plots of three aligned images (a) and three misaligned images (b) that are generated with a one-dimensional non-linear model.

Fig. 3. Eigenvalue spectra of aligned (a) and misaligned (b) set of images. Note that � = 3, so we expect three dominant eigenvalues in the aligned case. Note that in (a)

eigenvalues 4–11 are not exactly zero but very small (< 10−3) and therefore not visible in the plot.
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Mg(Tg(x; μg)). The constant 1 ≤ L ≤ G is a user-defined parame-

ter. For different qMRI models, a different value of L must be cho-

sen. A good initial guess is L = �, assuming that the non-linear

�-dimensional subspace can be approximated by a �-dimensional

hyperplane. Peng et al. (2010) also assume that well-aligned im-

ages are linearly correlated but they use a sparse and low-rank de-

composition to directly minimize the rank of M with a trade-off

parameter for sparsity. Since the rank of M is equal to the num-

ber of non-zero eigenvalues of K, the methods are related, but in

our method the rank is not minimized but can be controlled by L,

which is preferable in qMRI, since the rank depends on the qMRI

model. The dimension of the subspace in qMRI may be less than

� when the parameters in θ are correlated, or higher than � due

to the non-linearity of the acquisition models. That is why we pro-

pose a second dissimilarity metric that circumvents the need to

choose L:

DPCA2(μ) =
G∑

j=1

jλ j(μ). (7)

In DPCA2 the eigenvalues with the highest values (and the low-

est indices) have the lowest weight. Given that λ1 + λ2 + . . . + λ j =
G, DPCA2 promotes that as much variance as possible is explained

by a few large eigenvectors.

2.3.1. Metric derivatives

Minimization of the dissimilarity metric with gradient based

optimizers requires the derivative of the metric with respect to μ.

To differentiate Eqs. (6) and (7) with respect to μ we use the ap-
roach of van der Aa et al. (2007):

∂DPCA

∂μ
= −

L∑
j=1

∂λ j

∂μ
= −

L∑
j=1

vT
j

∂K

∂μ
v j, (8)

nd

∂DPCA2

∂μ
=

G∑
j=1

j
∂λ j

∂μ
=

G∑
j=1

jvT
j

∂K

∂μ
v j, (9)

here vT
j

is the jth eigenvector of K. Similarly to van der Aa et al.

2007) we ignore the unlikely repetition of eigenvalues. For re-

eated eigenvalues, linear combinations of eigenvectors are also an

igenvector, which invalidates the above. Using Eqs. (5) and (8) we

btain the derivative of DPCA with respect to an element μp:

∂DPCA

∂μp
= − 2

N − 1

L∑
i=1

[
vT

i �
−1

(
M − M

)T

(
∂M

∂μp
− ∂M

∂μp

)
�−1vi

+ vT
i �

−1(M − M)T(M − M)
�−1

∂μp
vi

]
. (10)

The above expression is obtained after simplifications and using

he fact that

TBTEv = vTETBv (11)

or two matrices B and E and vector v. The derivative of �−1 with

espect to μp is equal to

∂�−1

∂μp
= − �−3

N − 1
diag

[
(M − M)T

(
∂M

∂μp
− ∂M

∂μp

)]
(12)
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nd ∂M/∂μp and ∂M/∂μp are computed using

∂Mg(T g(x;μg))

∂μp
=

(
∂Mg

∂x

)T∣∣∣
T g(x;μg)

(
∂T g

∂μp

)∣∣∣
(x;μg)

. (13)

The same steps are used to calculate ∂DPCA2/∂μp. It was veri-

ed that the value of ∂M/∂μp, the derivative of the mean inten-

ities, was negligibly small and could therefore be ignored in the

ctual implementation.

.4. Transformation models

In our experiments (see Section 4) we use two different trans-

ormation models: a non-rigid transformation model in which de-

ormations are modeled by cubic B-splines, proposed by Rueckert

t al. (1999), and an affine transformation model. Similar to

achinger and Navab (2013) we used an exponential mapping of

he affine matrix for parameterization.

.5. Optimization

An adaptive stochastic gradient descent (ASGD) optimization

ethod, proposed by Klein et al. (2009), was used, which ran-

omly samples positions in image space at each iteration in order

o reduce computation time. Sampling was done off the voxel grid,

hich was shown to be necessary to reduce interpolation artifacts,

s proposed by Klein et al. (2010). A multi-resolution strategy was

sed. In such a strategy the image is Gaussian-blurred with a cer-

ain standard deviation and at each level the standard deviation

s decreased, such that large deformations are corrected first and

ner deformations are corrected at higher levels. When a B-spline

ransformation was used, the control point spacing was also de-

reased at each resolution level. The number of random samples,

he number of resolution levels, and the number of iterations per

esolution level are user-defined parameters. Linear interpolation

as used to interpolate the images during registration, to limit

omputation time. Cubic B-spline interpolation was used to pro-

uce the final motion-compensated images.

For the groupwise framework, the average deformation of the

mages was constrained to be zero by the approach of Balci et al.

2007): the average derivative of the dissimilarity metric with re-

pect to its parameters μg is subtracted from each derivative to μg,

.e. the derivatives are centered to zero mean.

∂D∗

∂μg

= ∂D
∂μg

− 1

G

∑
g′

∂D
∂μg′

, (14)

here ∂D∗/∂μg is the zero-centered derivative.

.6. Reference dissimilarity metrics

We compared the proposed method with three other methods:

pairwise method that uses a MI-based dissimilarity metric, and

our groupwise methods. The pairwise MI dissimilarity used was

roposed by Thévenaz and Unser (2000). The number of histogram

ins used to calculate the probability functions is set to 32 in all

xperiments.

Wachinger and Navab (2013) proposed accumulated pairwise

stimates (APE) as a family of metrics. One of the metrics they pro-

ose is the sum of squared normalized correlation coefficients. This

an be written as the sum of the squared elements of the correla-

ion matrix K. We implemented this metric as follows:

APE(μ) = 1 − 1

G

√∑
i

∑
j

Ki j(μ)2. (15)
Metz et al. (2011) proposed the sum of the variances, assuming

o intensity changes between images. The metric is defined as:

VAR(μ) = 1

NG

N∑
i=1

G∑
g=1

[Mg(T g(xi;μg)) − M̃(xi;μ)]2, (16)

here M̃(xi;μ) = 1
G

∑
g Mg(T g(xi;μg)).

The groupwise mutual information based method proposed by

hatia et al. (2007) was implemented as:

G-MI(μ) = −
G∑

g=1

[H(M̃(·;μ)) + H(Mg(T g(·;μg)))

− H(M̃(·;μ), Mg(T g(·;μg)))], (17)

here H(·) represents the marginal entropy function and H(·, ·) the

oint entropy function. For this method the number of histogram

ins was also set to 32 in all experiments.

Andersson and Skare (2002) and Hallack et al. (2014) proposed

o minimize the residual error of the model fit:

T1
(μ) = 1

N

N∑
i=1

min
θ

G∑
g=1

(Mg(T g(xi;μg)) − mg(θ(xi)))
2. (18)

We implemented this method for the model given by Eq. (2).

.7. qMRI fitting method

Having registered the images Mg, the qMRI parameters θ can be

stimated by fitting the model mg at each voxel. The qMRI model is

tted using a maximum-likelihood (ML) estimator that takes into

ccount the Rician noise of MRI data. The estimation procedure is

efined as (Poot and Klein, 2015):

ˆ, ε̂ = arg max
θ,ε

(ln p(M|m(θ), ε)), (19)

here p is the probability density function of the Rician distribu-

ion, M are the images, m is the qMRI model with parameters θ,

nd ε is the noise level, which is estimated per voxel. To get an ac-

urate estimate of the noise level, the bias caused by the reduced

egrees of freedom of the residual is corrected according to Poot

nd Klein (2015):

ˆmodif = ε̂
√

G/(G − �). (20)

When G − � is low, there are not enough degrees of freedom

eft in a voxel to estimate the noise level precisely. In these cases

e therefore regularized the noise level with a log prior S(ε) pro-

oting a spatially smooth noise level field (Poot and Klein, 2015):

ˆ, ε̂ = arg max
θ,ε

(ln p(M|m(θ), ε) − S(ε)). (21)

The qMRI fitting method is publicly available at fitMRI.bigr.nl.

. Data

We evaluated the registration methods on a purely synthetic

ataset, real CT lung datasets, five real qMRI datasets and five syn-

hetic datasets derived from the real data. The subsections below

escribe all datasets.

.1. SYNTH-MODEL

A purely synthetic image was generated to demonstrate the

dvantages of the proposed PCA-based methods when registering

MRI data. The generated images are linear combinations of five

asis images, representing five independent ‘tissue’ properties in a

MRI experiment:

g(θ) = wT
gθ, (22)

http://fitMRI.bigr.nl
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Fig. 4. (a) One of the five ‘tissue’ properties, i.e. an element of θ, (b) one of the G

weighted images.
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where θ contains five ‘tissue’ properties. Each property is spatially

correlated and contains large and small structures. An example ‘tis-

sue’ property map is shown in Fig. 4a. The weights are optimized

such that the sum of the pairwise mutual information of the im-

ages is minimized. The intrinsic dimension of the synthetic data

can however be perfectly resolved by a principal component anal-

ysis. We expect that especially the proposed PCA-based methods

can successfully register the images. An example of an image Mg

is shown in Fig. 4b. The code to generate the SYNTH-MODEL is in-

cluded as supplementary material.

3.2. Synthetic qMRI

To evaluate how the methods perform with different qMRI

models, in a setting with known ground truth, we created syn-

thetic data based on real qMRI data. To save computation time, we

extracted a 2D slice from a single subject, for each of the qMRI

applications studied in this paper (see Sections 3.4–3.8). These

slices were fitted and the obtained θ and the acquisition param-

eters were used to simulate the contrast with the qMRI model

that belongs to the data. Rician noise was added to the synthetic

qMRI data such that the signal-to-noise (SNR) ratio was equal to

10, where the SNR is defined as the mean signal intensity over

all images divided by the σ -parameter of the Rician distribution.

The pixel spacings in the first two dimensions and G for the syn-

thetic datasets are equal to their values in the corresponding real

datasets. All synthetic qMRI datasets are written with a prefix ‘s-’.

3.3. CT-LUNG

Ten 4D CT lung datasets from the DIR-LAB database (Castillo

et al., 2009) were used to demonstrate the results of the meth-

ods on datasets with only slight intensity changes. Note that this

can be seen as a special case of quantitative imaging where a 1-

parameter model (� = 1) describes the intensity with a constant:

mg(θ) = c, (23)

with θ = c, which is trivially estimated by computing the mean

over Mg. The voxel size was approximately 1.1 × 1.1 × 2.5 mm3.

The size of the first five images was around 256 × 256 × 100 and

of the last five images around 512 × 512 × 128. For all datasets

G = 10.
Fig. 5. Examples of real datasets and, if use
.4. T1MOLLI-HEART

Quantification of T1 relaxation is important for the characteriza-

ion of myocardial tissue, which is useful to assess both ischemic

nd nonischemic heart muscle diseases (Xue et al., 2012). A popu-

ar cardiac T1 mapping method uses the modified Look-Locker in-

ersion recovery (MOLLI) sequence, described in Messroghli et al.

2004). The qMRI model for MOLLI is given by Eq. (2). Nine

1MOLLI-HEART datasets from porcine hearts with a transmu-

al myocardial infarction of the lateral wall were acquired using

ingle-slice acquisition. For each subject G = 11 two-dimensional

mages of size 512 × 512 were acquired. The pixel size was around

.7 × 0.7 mm2. Inversion times TIg ranged from 82 to 3866 ms.

ig. 5a shows an example image.

.5. T1VFA-CAROTID

Quantifying the relaxation parameters T1 and T2 can help to as-

ess the composition of atherosclerotic plaque in the carotid ar-

eries (Coolen et al., 2015). Carotid plaque composition has been

hown to be associated with the occurrence of cerebrovascular

vents (Takaya et al., 2006). Coolen et al. (2015) proposed a quan-

itative carotid plaque imaging method based on a 3D improved

otion-sensitized driven-equilibrium prepared black-blood turbo

eld echo sequence. The qMRI model of this variable flip-angle ap-

roach is given by:

g(θ) =
∣∣∣∣A sin(αg)

1 − e−TR/T1

1 − cos(αg)e−TR/T1
e−TEg/T2

∣∣∣∣, (24)

ith θ = (A, T1, T2), αg the flip-angle and TEg the T2 preparation

ime per image Mg and TR the repetition time (Coolen et al., 2015).

alues for the acquisition parameters were αg ∈ [6, 4, 15, 15,

5] degrees, TEg ∈ [11.5, 11.5, 11.5, 26, 45] ms and TR = 10 ms. Eight

1VFA-CAROTID datasets were acquired. For each subject, G = 5

hree-dimensional images of size 224 × 223 × 36 with voxel size

.7 × 0.7 × 0.7 mm3 were acquired. One of these five images was

n anatomical reference scan. The other four scans were used for

he combined T1 and T2 fitting. Although this method gave ac-

urate T2 mapping results when analyzed in a ROI (Coolen et al.,

015), the acquisitions were not optimal yet for true voxelwise T2

tting, possibly due to the rather low maximum TEg. In our ex-

eriments, it proved difficult to perform accurate voxelwise T2 fits

n the current data, regardless of the registration strategy. There-

ore, we only report evaluations of T1 values. More acquisition de-

ails can be found in Coolen et al. (2015) and an example image

s shown in Fig. 5b. Please note that although the T1MOLLI-HEART

nd the T1VFA-CAROTID experiments both result in a T1 estimate,

different model mg is underlying the acquisition.

.6. ADC-ABDOMEN

The ADC provides quantitative information related to the dif-

usion of water molecules in biological tissues. Pathophysiological

rocesses such as cancer are known to have an impact on cell den-

ity, which translates into different diffusion properties and there-

ore the ADC is an interesting biomarker to assess these diseases
d, corresponding registration masks.
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Table 1

Acquisition details of the DTI-BRAIN data.

Dataset # b = 0 s/mm2 # DWIs G b-value Voxel size

[s/mm2] [mm3]

1 10 60 70 700 2.0 × 2.0 × 2.0

2 1 60 61 1200 1.75 × 1.75 × 2.0

3 1 32 33 800 1.75 × 1.75 × 2.0

4 1 32 33 800 1.75 × 1.75 × 2.0

5 1 45 46 1200 1.72 × 1.72 × 2.0
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Guyader et al., 2014). In this work, we evaluate ADC mapping in

he abdomen. The ADC acquisition model is the following:

g(θ) = B0e−bguT
g Dug , (25)

ith θ = (B0, D11, D22, D33) (Guyader et al., 2014). The vector in the

irection of the applied gradient is given by ug, D is a 3 × 3 sym-

etric diffusion tensor and bg is the so-called b-value. The ADC is

iven by

DC = trace(D)/3, (26)

ence only the diagonal elements of D are required. For acquiring

he ADC data, an interleaved multi-slice diffusion weighted acqui-

ition sequence was used. Five ADC-ABDOMEN datasets were ac-

uired. For each subject G = 19 images of size 256 × 224 × 40

ere acquired with a voxel size of 1.48 × 1.48 × 5 mm3 with

-values of 0, 100, 150, 200, 300, 500 and 900 s/mm2. Diffusion

eighting was applied in three orthogonal directions aligned with

he read, phase and slice directions. More details about the ac-

uisition settings of these datasets can be found in Guyader et al.

2014). Fig. 5c shows an example of a diffusion weighted image.

.7. DTI-BRAIN

Measuring the diffusion tensor of water in tissues can provide

arameters that help to characterize tissue composition, the phys-

cal properties of tissue constituents, tissue microstructure and its

rchitectural organization. It is often used to map the white matter

issue structure (Basser and Jones, 2002; Jones and Leemans, 2011;

ournier et al., 2011). The qMRI model belonging to DT imaging

quals:

g(θ) = B0e−buT
g Dug , (27)

ith θ = (B0, D11, D12, D13, D22, D23D33) for the DT mapping. The

ector in the direction of the applied gradient is given by ug, D is a

× 3 symmetric diffusion tensor and b is the so-called b-value. In

his paper we calculate the mean diffusivity (MD), which is given

y:

D = trace(D)/3. (28)

Five DTI-BRAIN datasets were acquired with a diffusion

eighted echo planar imaging sequence. Details about the five

atasets are provided in Table 1 and details of the acquisition set-

ings can be found in, respectively, Leemans et al. (2006), de Geeter

t al. (2012), Wang et al. (2012), van der Aa et al. (2011), and

eijmer et al. (2012). Fig. 5d shows an example of a diffusion

eighted image.

.8. DCE-ABDOMEN

DCE imaging is an established method for assessing mi-

rovascular changes associated with disease in tissues. Examples

f tissue diseases where DCE imaging is used are cancer, in-

ammatory conditions, cerebral ischemia, and cardiac ischemia

Parker et al., 2006). In DCE imaging the contrast in the images

aries due to the injected contrast agent. The acquisition parame-

ers T and α are not varied. In this work, we study DCE imaging
R
n the abdomen. The qMRI model belonging to the DCE acquisition

quals:

g(θ) = S0
(1 − cos α)e−TR/T10

1 − e−TR/(T10+C(θ,tg)T1)
, (29)

ith C(θ, tg) the contrast agent concentration in the tissue, de-

cribed by the extended Tofts model (Tofts et al., 1999):

(θ, tg) = Cp(tg − 	)vp + Cp(tg − 	) ∗ Ktranse− Ktrans

ve
tg , (30)

here θ = (Ktrans, ve, vp,	), Cp(t) is the blood plasma concentra-

ion described by the general arterial input function by Parker

t al. (2006), and ∗ denotes the convolution operator. The time

elay 	 was estimated separately, prior to fitting θ . Ktrans is a

easure of capillary permeability, vp is the blood volume frac-

ion, ve is the volume fraction of extracellular, extravascular space

nd S0 is the signal without contrast agent. Known variables were

he acquisition time tg, the flip-angle α, the repetition time TR,

he longitudinal relaxation parameter without contrast T10, and the

ongitudinal relaxation parameter of the contrast agent T1. The val-

es for the known acquisition parameters were α = 20 degrees,

R = 3.19 ms, T10 = 725 ms, and T1 = 200 ms. Five DCE-ABDOMEN

atasets were acquired with a spoiled gradient echo sequence. Per

ubject G = 160 images of size 160 × 160 × 30 were acquired with

voxel size of 2.5 × 2.5 × 2.5 mm3. More acquisition details can

e found in Klaassen et al. (2014). An example image is shown in

ig. 5e.

. Experiments

The proposed registration methods were implemented in the

ublicly available registration package Elastix (Klein et al., 2010).

ll datasets were registered with six intensity-based dissimilarity

etrics and, in addition, both the real and synthetic T1MOLLI-

EART datasets were registered with a model-based metric.

1. DMI (pairwise)

2. DVAR (groupwise)

3. DAPE (groupwise)

4. DG-MI (groupwise)

5. DT1
(groupwise) (T1MOLLI model)

6. DPCA (groupwise)

7. DPCA2 (groupwise)

To account for deformations caused by heart-pulsations and

reathing we used a B-spline transformation model for the

T-LUNG data, T1MOLLI-HEART, T1VFA-CAROTID, ADC-ABDOMEN

nd DCE-ABDOMEN experiments. For ADC-ABDOMEN and DCE-

BDOMEN datasets, results are also reported for an affine transfor-

ation. To account for deformations caused by head motion and

ddy current distortions we used an affine transformation model

or application DTI-BRAIN. Two types of experiments were done:

1. The synthetic images were deformed by applying a known

transformation and registered with all methods;

2. The real CT-LUNG and qMRI data were registered with all

methods.

The parameters of the transformation applied to the SYNTH-

ODEL data were drawn from a normal distribution, such that

he initial deformation was approximately six pixels for the affine

ransformation and three pixels for the B-spline transformation.

he parameters of the transformations applied to the synthetic

MRI datasets were drawn from normal distributions, such that

he initial deformation was approximately one to two pixels. For

he cases with non-rigid deformations, the control point spacing σ
or the initial and estimated B-spline transformation was equal in

ll dimensions: σ = [ν, ν], with the following values for ν:
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Table 2

Summary of the settings used in the image registration experiments, for all datasets.

qMRI application G � L ν [mm] Reference image Registration mask Evaluation ROI

SYNTH-MODEL 20 5 5 16 First image of the series – –

CT-LUNG 10 1 1 6, 13 and 20 First image of the series Lungs Red

T1MOLLI-HEART 11 3 3 32, 64 and 128 Slice 1, 4, 7 and 11 See Fig. 5a Myocardium

T1VFA-CAROTID 5 3 1 8, 16 and 32 Anatomical scan See Fig. 5b Carotid artery wall

ADC-ABDOMEN 19 4 4 32, 64 and 128 b = 0 s/mm2 image – Spleen

DTI-BRAIN See Table 1 7 7 – b = 0 s/mm2 image – Parenchyma

DCE-ABDOMEN 160 4 4 32, 64 and 128 Non-contrast weighted image – Pancreas
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• SYNTH-MODEL: ν = 16 mm
• s-T1MOLLI: ν = 64 mm
• s-T1VFA: ν = 16 mm
• s-ADC: ν = 64 mm
• s-DCE: ν = 64 mm

The values of ν were chosen such that the simulated deforma-

tions were realistic. For the T1MOLLI-HEART, T1VFA-CAROTID ex-

periments and their synthetic datasets we used registration masks,

loosely drawn around the heart and the carotid arteries, to reduce

the influence of surrounding organs. Examples are shown in Fig. 5a

and b. For T1VFA-CAROTID, registration was performed separately

for the left and right carotid. Lung masks were used in the CT-

LUNG experiment, similar to Metz et al. (2011). For the cases with

non-rigid deformations, different values for the control point spac-

ing σ for the B-spline transformation were used. The values for ν
are provided in Table 2.

Before further processing of the ADC-ABDOMEN data, within-

image motion artifacts due to interleaved acquisition were cor-

rected with the methods of Guyader et al. (2014).

For all registrations we used the following settings:

• two resolutions,
• 1000 iterations per resolution,
• 2048 random coordinate samples per resolution.

In the pairwise registration framework, a reference image must

be chosen. The images that are used as reference for each applica-

tion are shown in Table 2. For the T1MOLLI-HEART data there is no

obvious reference image, so in this case we used multiple images

of each dataset as a reference image, which enables us to evaluate

the effect of the reference image on the results.

The DPCA method requires the user to set the parameter L. This

parameter is shown in Table 2 for all qMRI applications.

4.1. Evaluation measures

As the synthetic data are aligned by design, they can be used as

a ground truth to evaluate registration accuracy. A known transfor-

mation T g(x;μinit,g) was applied to the data and corrected using

the registration methods. The accuracy of the registration method

can be evaluated by calculating the resulting residual deformation

field d(x):

dg(x) = T g

(
T g(x;μinit,g); μ̂g

)
− x, (31)

with T g(x; μ̂g) the transformation estimated by the registration

method. The lower d(x) for all x, the more accurate the registra-

tion method. However, the constraint, Eq. (14), was not applied to

the initial transformation, so we subtract the mean of the defor-

mation field: d∗
g(x) = dg(x) − 1

G

∑G
g′=1 dg′ (x). We report the mean

and standard deviation of ‖d∗
g(x)‖ over all x and g. Secondly, we

measured how the uncertainty of the fitted parameter of interest

of the qMRI model was altered by the registration method (see

Section 4.1.4).
For the real data, no ground truth was available. We therefore

sed, besides a visual inspection, the following evaluation mea-

ures, which can be summarized as:

1. how well manually defined landmarks correspond in the im-

ages (CT-LUNG, T1VFA-CAROTID and DCE-ABDOMEN);

2. how well anatomical regions of interest (ROI) overlap in all im-

ages (T1MOLLI-HEART and ADC-ABDOMEN);

3. the smoothness of the deformation field, evaluated within an

ROI;

4. the effect of the registration method on the uncertainty of the

fitted parameter of the qMRI model, evaluated within an ROI.

To facilitate a fair comparison of all registration methods for

he different evaluation measures, the images resulting from the

roupwise registration metrics DVAR, DAPE, DG-MI, DT1
, DPCA and

PCA2 were transformed to the space of the reference image

R(x) as used by DMI. To that purpose, the inverse transforma-

ion T −1
R (x;μR) was computed. The manually outlined structures

hat are used as ROIs for all qMRI applications are mentioned in

able 2. For the DTI-BRAIN data, neither landmarks nor structures

ould be reliably identified on each of the diffusion weighted im-

ges, so for this application no overlap or point correspondence

as calculated. In the following sections the evaluation methods

re explained in more detail.

.1.1. Point correspondence

The correspondence between landmarks was evaluated with the

ean target registration error (mTRE):

TREl = 1

G − 1

G∑
g=1, g�=R

‖pg − T g

(
T −1

R (pR;μR);μg

)‖, (32)

here G is the number of images in which the landmark l is

nnotated, pR the landmark in the reference image, pg the land-

ark annotated in image g, and T g(T −1
R (pR;μR);μg) the trans-

ormation of point pR from the reference space to the space of

mage g. The transformations from reference space were used to

acilitate the comparison with the non-groupwise DMI approach.

or the CT-LUNG data anatomical landmarks are publicly available.

or the DCE-ABDOMEN and T1VFA-CAROTID data the landmarks

ere manually annotated. Multiple landmarks were annotated and

herefore we report the mean over the mTREl for all l. For CT-

UNG, 75 landmarks were annotated in the first five timepoints

nd 300 landmarks were annotated in the first and fifth time-

oint. The mTRE is calculated for the 75 landmarks in the first

ve timepoints and for the 300 landmarks in inhale and exhale

hase. The mean of these two mTREs is reported. In the T1VFA-

AROTID data four landmarks per dataset were determined, two

er registration mask, and they were defined in all five images.

n the DCE-ABDOMEN five landmarks per dataset were determined

nd they were defined in 50 of the 160 images. Due to sliding

otion, low resolution and high contrast differences the five land-

arks were annotated in 50 different images, which results in an

nequal number of landmarks per image of the DCE-ABDOMEN
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Table 3

Results of the SYNTH-MODEL experiment. Mean ±
standard deviation of ‖d

∗
g(x)‖ [mm].

Table 4

Results of the synthetic qMRI experiments. Mean ± standard deviation of

‖d
∗
g(x)‖ [mm].

Table 5

90%
√

CRLB of T1 [ms], ADC [μm2/ms], MD [μm2/ms] and Ktrans [min−1] in ROI

of synthetic datasets.
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ata. Note that instead of an mTREl, i.e. an mTRE per landmark

, we could have computed an mTREg, i.e. an mTRE per image g.

or datasets CT-LUNG and T1VFA-CAROTID the mean over mTREl

or all l is equal to the mean over mTREg for all g, but for the DCE-

BDOMEN data this is not the case due to the unequal number of

andmarks per image.

.1.2. Overlap

We extended the Dice coefficient to measure the overlap be-

ween more than two segmentations as:

iceG = G
|S1 ∩ S2 . . . ∩ SG|

|S1| + |S2| . . . + |SG| , (33)

here Sg is the segmentation in the gth image and G the number

f segmentations. Note that DiceG is sensitive to the misregistra-

ion of a single image, which is important in qMRI since a single

isregistered image can severely reduce the quality of the qMRI

odel fit.

In the T1MOLLI-HEART experiment we measured the overlap

f the manually outlined myocardium, outlined on six to nine

mages. Not all images were outlined because manual segmen-

ation on some images proved to be difficult due to low con-

rast between the myocardium and surrounding tissues. For the

DC-ABDOMEN we measured the overlap of the manually outlined

pleen in b = 0 s/mm2 image and in diffusion weighted images

= 100 s/mm2 in phase direction, b = 100 s/mm2 in slice direc-

ion, b = 150 s/mm2 in slice direction, b = 200 s/mm2 in read di-

ection, b = 300 s/mm2 in read direction, b = 500 s/mm2 in phase

irection and b = 900 s/mm2 in phase direction.

.1.3. Smoothness of the transformation

Extreme and non-smooth deformations are unexpected for the

xperiments we conducted. Hence, the smoothness of the defor-

ation field can be used to identify such undesirable transforma-

ions. It is obtained by calculating the mean of the standard devi-

tion of the determinant of ∂Tg/∂x over all x for all images:

TD|∂T g/∂x| = 1

G

G∑
g=1

STD(|∂T g/∂x|), (34)

here STD(|∂Tg/∂x|) is the standard deviation of |∂Tg/∂x| over all

∈ ROI.

.1.4. Uncertainty estimation of the qMRI fit

The uncertainty of the estimated qMRI model parameters θ was

uantified by the Cramér–Rao lower bound (CRLB), which provides

lower bound for the variance of the ML estimated parameters

Sijbers et al., 1999; Cavassila et al., 2001; Rao, 1946; Poot and

lein, 2015). The CRLB of a function f(θ) is given by:

RLB f (θ, ε) =
(

∂ f

∂θ

)T

I−1(θ, ε)

(
∂ f

∂θ

)
, (35)

here I(θ, ε) is the Fisher information matrix. For Rician dis-

ributed data, no closed-form expression for the Fisher information

xists. To evaluate the CRLB, we used the method by Poot et al.

2013), which approximates the integrals present in the evaluation

f the Fisher information to double precision accuracy. To use the

RLB as indicator of misalignment we adopt the measure proposed

y Bron et al. (2013), which is the 90% percentile of the square

oot of the CRLB (90%
√

CRLB) over an ROI. This measure identifies

isalignment, because misalignment may result in biologically im-

lausible values of the estimated parameters, especially at tissue

oundaries. Additionally, the model will fit less accurately to the

ata, resulting in a higher estimated noise level and thus higher

RLB (Bron et al., 2013). A 90% percentile was chosen because reg-

stration errors are mainly visible at the edges of a region and
any voxels in the ROI will not make a difference; however we do

ot want to be sensitive to a very low number of extremely high

utliers. Please note that when the 90%
√

CRLB is high, the data is

ikely to be misaligned. However, when the 90%
√

CRLB is low, it is

ot certain if the data is well aligned, which is why this measure

hould preferably be used in combination with other criteria.

. Results

The results in Tables 3–11 are color-coded. A red-to-white color

cale is used to visually depict the (rank of the) results, where red

ndicates a worse result and white indicates a better result.

.1. Results on synthetic data

The mean and standard deviation of ‖d∗
g(x)‖ of the SYNTH-

ODEL images are shown in Table 3. The left column shows the

ean and standard deviation of ‖d∗
g(x)‖ in the case of T g(x;μinit,g)

eing an affine transformation, and in the right column the case

f T g(x;μinit,g) being a B-spline transformation. Only the proposed

ethods DPCA and DPCA2 were successful in aligning the images.

Table 4 shows the mean ± standard deviation of ‖d∗
g(x)‖ of the

ynthetic qMRI data. This evaluation measure is calculated within



74 W. Huizinga et al. / Medical Image Analysis 29 (2016) 65–78

Table 6

Results of the CT-LUNG experiment. Mean and standard deviation over all

subjects for all evaluation measures and control point spacings 6 mm, 13 mm,

and 20 mm.
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the registration mask when that is present or else on the entire

image. For all experiments except DCE-ABDOMEN, DVAR showed

the worst registration accuracy compared to all other methods. For

s-T1MOLLI, DT1
performed best, which is to be expected, since, in

this simulation example, the intensities perfectly adhere to the T1-
Table 7

Results of the T1MOLLI-HEART experiment. Mean and standard deviation over all su

and 128 mm and for reference images 1, 4, 7 and 11.
OLLI model. For the remaining applications either DPCA or DPCA2

utperformed the other methods.

Table 5 shows the 90%
√

CRLB of the tissue property of interest

f the synthetic datasets, before and after registration, evaluated

n a specified ROI. For s-T1MOLLI the model-based metric DT1
per-

ormed best. For all other applications both DPCA or DPCA2 achieved

he lowest 90%
√

CRLB of the tissue property.

.2. Results on real data

The results of the CT-LUNG experiment are shown in Table 6.

he best control point spacing for this data is 13 mm. Method

G-MI had the best performance, and DPCA performed similar to

MI, DVAR and DAPE. Additionally, to allow for a direct comparison,

e computed the mean of mTREl for all l of DVAR on the subset

f CT-LUNG used by Metz et al. (2011). In this subset we observed

.26(0.33) where 1.26(0.27) was reported by Metz et al. Slight dif-

erences may be due to different mask and sampling strategies.

The results of the experiments on the real T1MOLLI-HEART data

re shown in Table 7. Even though the lowest 90%
√

CRLB is ob-

ained for DT1
, the methods DPCA and DPCA2 have the highest DiceG

nd the lowest STD|∂T g/∂x|. DVAR performed worst on all evalua-

ion measures. Also notice that the result of DMI depends heavily

n the choice of reference image. The best results are obtained for

eference image 11, which is the image acquired with the longest

nversion time and therefore having the highest SNR.

The results on the T1VFA-CAROTID data are shown in Table 8.

ecause the registration ran separately for the left and right

arotid, the mean over the two carotids is taken per subject. For
bjects for all evaluation measures and control point spacings 32 mm, 64 mm,
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Table 8

Results of the T1VFA-CAROTID experiment. Mean and standard deviation over all

subjects for all evaluation measures and control point spacings 8 mm, 16 mm,

and 32 mm.

Table 9

Results of the ADC-ABDOMEN experiment. Mean and standard deviation over

all subjects for all evaluation measures and control point spacings 32 mm,

64 mm, and 128 mm and an affine transformation.

∗The registration of one subject failed and was not included in the results.

Table 10

Results of the DTI-BRAIN experiment. Mean and stan-

dard deviation of the 90%
√

CRLB MD over all subjects.

Table 11

Results of the DCE-ABDOMEN experiment. Mean and standard deviation over

all subjects for all evaluation measures and control point spacings 32 mm,

64 mm, and 128 mm and an affine transformation.
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ll methods the lowest 90%
√

CRLB T1 is obtained at ν = 16 mm, of

hich DG-MI performed best. At ν = 16 mm a similar point cor-

espondence and transformation smoothness are obtained by all

ethods except for DVAR.

The results of the real ADC-ABDOMEN data are shown in

able 9. The 90%
√

CRLB ADC in the ROI is decreased after regis-

ration for all methods and all control point spacings. Extreme de-

ormations, especially at higher b-values cause the lower overlap,

hich can be seen from the relatively high STD|∂T g/∂x| for low con-

rol point spacings. DPCA2 performed best in terms of DiceG overlap

nd has the lowest STD|∂T g/∂x| and 90%
√

CRLB ADC for ν = 32 mm.

The results of the DTI-BRAIN data are shown in Table 10. Both

VAR and DG-MI increase the 90%
√

CRLB MD. A similar 90%
√

CRLB

D is obtained for the remaining methods.

The results of the DCE-ABDOMEN data are shown in Table 11.

he best 90%
√

CRLB Ktrans was obtained for DPCA2 for ν = 32 mm,

hereas DMI performed worst on that measure with ν = 32 mm.

he point correspondence is worst for DVAR at ν = 32 mm. Over-

ll DPCA2 showed the best point correspondence and the lowest

TD|∂T g/∂x|.
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Fig. 6. Tissue maps, generated before (top) and after registration (bottom) with DPCA2. The green arrows indicate the differences in the tissue maps before and after regis-

tration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.3. Visual inspection of qMRI data

Fig. 6 shows tissue maps before registration and after regis-

tration with DPCA2 of specific datasets that are used in the ex-

periments. The difference in the estimated tissue maps is clearly

visible, especially at tissue boundaries, showing the importance of

registration as a pre-processing step prior to fitting the qMRI data.

For each qMRI application we extracted slices from an original real

qMRI dataset and a motion corrected dataset (with DPCA2), which

can be viewed online with the Elsevier viewer, which is available

at the online version of this manuscript.

6. Discussion

We proposed two general registration methods for qMRI and

we compared our methods to five other state-of-the-art registra-

tion methods. The following sections discuss in more detail the re-

sults of the synthetic and real data, some limitations of the evalu-

ation, and possibilities for future work.

6.1. Synthetic data

A purely synthetic dataset was created to clearly demonstrate

the advantages that the proposed PCA-based methods have. In

this example with low pairwise mutual information between the

images, the experiments confirmed that the methods based on

mutual information (DMI, DG-MI), or groupwise correlation (DAPE)

failed to register the data. The proposed PCA-based methods gave

very good registration results in this challenging example. It should

be emphasized that, as the images in this synthetic example are

linear combinations of a few basis images, it is expected that

methods based on PCA give good results. Nevertheless this ex-

ample provides insight in the functionality of the registration

methods.

On synthetic data created using existing qMRI models, the PCA-

based methods perform well in all experiments for both evaluation

measures, whereas the other methods either fail or have only good

results in a selection of the experiments.

For the s-T1VFA-CAROTID and T1VFA-CAROTID we used L = 1

instead of L = � = 3 for metric DPCA. Visual inspection of initial re-

sults led to this choice. A possible explanation why L = 1 showed

better results is that the relatively small registration mask and the

small number of acquired images could lead to only one dominant

eigenvector. The second proposed metric, DPCA2, eliminates the ne-

cessity to choose L and shows results comparable to D .
PCA
.2. Real data

In the experiments where a B-spline transformation was used,

e investigated the influence of different values for the control

oint spacing. All experiments show that the proposed PCA-based

etrics show less extreme deformations and have better results

han the other methods, which is particularly the case for low con-

rol point spacings.

The CT-LUNG data was used to evaluate the proposed meth-

ds on data without intensity variation. The best result on the CT-

UNG data is obtained with DG-MI, possibly due to the slight inten-

ity variations that are present in the images. However, DMI, DVAR,

APE and DPCA showed competitive results.

In the T1MOLLI-HEART experiment we used different images as

reference image. The results show that the pairwise approach us-

ng DMI heavily depends on the choice of reference image, while

he groupwise approaches do not use a reference image during

egistration (and hence have a consistent performance across ref-

rence images).

DT1
performed well on the synthetic data, but on real data

he DiceG was lower and the deformations were less smooth than

hose of the proposed methods. Furthermore, this method needs

ustomization for different qMRI models.

.3. Limitations of the evaluation

Evaluation of image registration results is usually a hard task

ecause no ground truth is available. By using both synthetic and

eal qMRI data we extensively evaluated the registration meth-

ds. Registration accuracy was measured in terms of a mean and

tandard deviation of a residual deformation field (synthetic data),

oint correspondence or a groupwise Dice overlap (real data), the

moothness of the obtained deformation (real data), and the uncer-

ainty of the qMRI parameter of interest (real and synthetic data).

It was impossible to accurately outline the ROIs on all images

f the T1MOLLI-HEART data, because in some images there was

ot enough contrast between the tissues. This may result in an

verly optimistic overlap measure, since those images might also

e harder to register. In the DCE-ABDOMEN data, it proved diffi-

ult to manually annotate landmarks in the images, due to sliding

otion of the various organs combined with the breathing motion.

hese problems, associated with the lack of a ground truth, were

lleviated by reporting multiple evaluation measures, and by visu-

lly inspecting the data. In this way, a relatively complete picture

f registration performance was given.
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Smoothness and periodicity over time, which were modeled ex-

licitly by Metz et al. (2011), were not assumed or enforced in any

f the experiments in our work. It could, however, be incorporated

nto our PCA-based method in the same way as proposed by Metz

t al. (2011). Both in DCE-ABDOMEN and ADC-ABDOMEN we ob-

erved sliding motion. We did not explicitly account for this in the

ransformation model we used. However, since our methods can be

xtended with any other transformation model, one could use e.g.

he transformation models proposed by Delmon et al. (2013) and

erendsen et al. (2014), which are designed to account for sliding

otion.

No explicit regularization of the deformation field was used in

he registration experiments. Different amounts of implicit regu-

arization were compared by using different values for the control

oint spacings of the B-spline transformation model. Adding a reg-

larization term such as bending energy may even further improve

he results.

The CRLB was used as a measure to detect voxels that are fitted

ith a high uncertainty due to e.g. misalignment. Taking the 90%

ercentile over a voxel-wise fitted ROI is a good measure for regis-

ration accuracy and the values we report should be seen as such.

t should be stressed that, since the 90% percentile is a rather con-

ervative statistic, the 90%
√

CRLB values reported could be mislead-

ng when seen as an indicator of the precision typically attained.

or that purpose, the entire distribution of CRLB values in the ROI

ould have to be used.

.4. Future work

Since the qMRI models are typically non-linear, a linear

imension-reduction technique such as PCA can only approximate

he dimension of the subspace. It would therefore be interesting

o investigate replacing PCA by a non-linear dimension reduction

echnique such as kernel-PCA or Laplacian eigenmaps, similar to

.g. Baumgartner et al. (2014). However, this is computationally de-

anding and it may not result in better registrations if the mini-

um of the dissimilarity metric remains at the same location in

he transform parameter space.

The proposed registration methods are potentially applicable to

ny set of images where the voxel intensities are defined by a low-

imensional model. Possible other applications in medical imaging

re perfusion computed tomography (CT) and dynamic positron

mission tomography (PET). Perfusion CT is used for e.g. calcula-

ion of the myocardial blood flow index to detect functionally sig-

ificant coronary lesions (Rossi et al., 2014). In perfusion CT a con-

rast agent is injected in the coronary arteries and the heart is im-

ged at several time points, giving each image a different contrast.

ynamic PET is used for e.g. estimating the energy consumption in

umors. In dynamic PET a radio-active tracer is injected and multi-

le time frames are imaged to assess both the spatial and temporal

attern of the tracer uptake (Muzi et al., 2012). Both applications

cquire multiple time points in which the contrast changes and a

ow-dimensional model is fitted to the data to obtain quantitative

nformation about tissues. Therefore, the proposed methods could

otentially be used to correct the motion in such data.

. Conclusion

We proposed two novel generic groupwise registration methods

or qMRI. We evaluated our methods on five different applications

f qMRI and compared it to five other state-of-the-art registration

ethods. We showed the advantage of a groupwise approach ver-

us a pairwise approach and showed that our proposed methods

ave better or equal registration accuracy as the other methods.

oth methods that were proposed showed good results. When no
r little intensity changes are expected we would recommend us-

ng DPCA and choose L = 1 for minimal computational complexity

nd good registration results. For compensating misalignments in

MRI the preferred dissimilarity metric is DPCA2, because it is free

f any user-defined parameters.
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