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A registration method for motion estimation in dynamic medical imaging data is proposed. Registration is
performed directly on the dynamic image, thus avoiding a bias towards a specifically chosen reference
time point. Both spatial and temporal smoothness of the transformations are taken into account. Option-
ally, cyclic motion can be imposed, which can be useful for visualization (viewing the segmentation
sequentially) or model building purposes. The method is based on a 3D (2D + time) or 4D (3D + time)
free-form B-spline deformation model, a similarity metric that minimizes the intensity variances over
time and constrained optimization using a stochastic gradient descent method with adaptive step size
estimation. The method was quantitatively compared with existing registration techniques on synthetic
data and 3D + t computed tomography data of the lungs. This showed subvoxel accuracy while delivering
smooth transformations, and high consistency of the registration results. Furthermore, the accuracy of
semi-automatic derivation of left ventricular volume curves from 3D + t computed tomography angiog-
raphy data of the heart was evaluated. On average, the deviation from the curves derived from the man-
ual annotations was approximately 3%. The potential of the method for other imaging modalities was
shown on 2D + t ultrasound and 2D + t magnetic resonance images. The software is publicly available
as an extension to the registration package elastix.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

Dynamic imaging data are increasingly available due to ongoing
advancements in medical imaging techniques (Li et al., 2008a).
Motion estimation of the anatomy of interest from these images
is often desirable, e.g. to quantify motion-related markers of dis-
ease, to construct motion and deformation models for therapeutic
or surgical planning and guidance, or to remove motion to allow
the analysis of intensity features at corresponding anatomical loca-
tions over time. Examples of motion quantification are the mea-
surement of the distensibility of blood vessels or aneurysms (e.g.
Li et al., 2008b; Ganten et al., 2008), the quantification of lung func-
tion (e.g. Reinhardt et al., 2008; Boldea et al., 2008) and the quan-
tification of left ventricular function of the heart (e.g. Mahnken
et al., 2009). The application of motion and deformation models
in image-guided interventions was, for example, discussed by
Hawkes et al. (2005). Motion removal has been applied, for exam-
ple, in the analysis of perfusion CT or perfusion MRI images (e.g.
Xue et al., 2008; Milles et al., 2008).
ll rights reserved.
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Manual motion estimation from a time series of images is a te-
dious task. Corresponding landmark positions in time need to be
determined and depending on the application of interest the num-
ber of required landmarks may be very large. Image registration
methods are often applied to automate this process. In these meth-
ods, the correspondence between the anatomy at different time
points is found by minimizing a landmark based, segmentation
based or intensity based similarity measure (Maintz and Viergever,
1998; Hill et al., 2001). These registration procedures must be suf-
ficiently robust to handle the challenges inherent to dynamic
imaging, such as fast moving anatomy, motion artifacts (Li et al.,
2008a), and varying contrast-to-noise ratio over time, e.g. due to
the application of dose reduction techniques such as ECG-derived
pulsing windows in CT coronary angiography (Weustink et al.,
2009).

1.2. Previous work on motion estimation

In this work we focus on intensity based registration ap-
proaches, which work directly on the input images without the
need for preprocessing techniques to extract features from the
images. There is a vast amount of work on the application of inten-
sity-based image registration techniques for motion estimation.
Next to these approaches, groupwise registration techniques have

http://dx.doi.org/10.1016/j.media.2010.10.003
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been proposed for the simultaneous alignment of multiple images
from different patients (e.g. for atlas building), which is closely re-
lated to the alignment of different time point images without tak-
ing the temporal continuity of the data into account. We
distinguish the existing techniques by the basic components of a
registration approach: the transformation model, cost function
and optimization strategy. Details about these categorizations are
outlined below. An overview is given in Table 1. Besides these
three categories, the table also reports the support for constraints
on cyclic motion.

Several models can be used to describe the transformation that
aligns the images. We discriminate between methods using an
Eulerian approach, in which all deformations are described with
respect to the neighboring time point, and methods using a
Lagrangian approach, in which deformations are described with re-
spect to a chosen reference frame. In the latter approach the refer-
ence frame is often chosen to be directly related to one of the time
points of the input image, but sometimes also defined implicitly,
e.g. as the mean of the population. Most existing methods use a
Lagrangian transformation model which can either take or not take
Table 1
Existing dynamic and groupwise registration approaches. For every method, the transforma
motion are listed. More than one check mark for a certain method in a certain category m
explained in the introduction (Section 1.2). Methods are sorted on transformation mode
implemented in the cost function (c) or in the transformation model (t). The last three me

Transformation model

Method Eulerian Lagrangian (nD) Lagrangian (nD +

Boldea et al. (2008) u u

Reinhardt et al. (2008) u u

De Craene et al. (2009) u

Bidaut and VallTe (2001) u

Kaus et al. (2004) u

Lorenzo-Valdés et al. (2002) u

Marsland et al. (2003) u

Marsland et al. (2008) u

Rao et al. (2002) u

Rietzel and Chen (2006) u

Wierzbicki et al. (2004) u

Joshi et al. (2004) u

Balci et al. (2007a,b) u

Bhatia et al. (2004) u

Miller et al. (2000) u

Zöllei et al. (2005) u

Sundar et al. (2009) u

Castillo et al. (2010) u

Proposed method u

Reference time point u

Consecutive time points u

Groupwise method u
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Fig. 1. (a) nD + t B-spline grid, (b) cyclic nD + t B-spline grid and (c) nD B-spline grid
approaches (see Section 3.1). In the cyclic version (b), the grid points at the temporal b
into account the temporal smoothness of the deformations
(respectively denoted with nD + t and nD in Table 1; see also
Fig. 1 for an illustration). However, the majority of these methods
only force the deformations to be smooth, viz. continuous and dif-
ferentiable, in the spatial domain. Note that nD + t transformation
models have not only been applied in motion estimation methods
presented in Table 1, but also in inter-patient and intra-patient
alignment of dynamic imaging sequences (Peyrat et al., 2010; Per-
peridis et al., 2005; Lopez et al., 2008; Schreibmann et al., 2008).

The cost function, or dissimilarity metric, computes the dissimi-
larity between the images to measure the quality of the current
transformation estimate. We distinguish three different approaches,
often related to the chosen transformation model. The first is a con-
secutive approach in which the similarity is determined between
the images of consecutive time points. The second is a reference ap-
proach in which the similarity is determined between the image to
be registered and a chosen reference image. The last one is a global
approach, in which the imaging data of all time points are taken into
account in the computation of the cost function. A disadvantage of
the first two approaches is that a limited amount of available image
tion model, cost function, optimization strategy and inclusion of constraints on cyclic
eans that both approaches are applied in the same work. The different categories are
l, cost function and optimization strategy subsequently. Cyclic motion can either be

thods are used to compare the proposed method with (Section 3.1).
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used in reference time point, consecutive time point and groupwise registration
order (open nodes) are direct neighbors.
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information is used during the registration procedure. The individ-
ual registrations only exploit the information present in the refer-
ence image and the image to be registered, whereas the other
images may also contain valuable information. Moreover, by choos-
ing a single reference time point, the registration result can be biased
towards this image. In the global cost functions all image informa-
tion is taken into account simultaneously, potentially leading to
more robust and consistent registration results, without a bias to-
wards a certain reference image.

Finally, we distinguish two kinds of optimization approaches for
finding the optimal transformation. While the first approach opti-
mizes the cost function for every time point separately, the second
approach performs this optimization for all time points simulta-
neously, which we call a global approach. The optimization ap-
proach used is often related to the chosen cost function and
transformation model. For global cost functions, a global optimiza-
tion approach is needed. The same holds for the Lagrangian nD + t
transformation model that takes temporal smoothness into ac-
count. When a consecutive or reference cost function is applied,
the optimization is most often performed in a pairwise manner.

In certain cases it is known a priori that the anatomical motion
has a cyclic nature. When this knowledge is taken into account dur-
ing the acquisition procedure, e.g. by ECG-gating or respiratory gat-
ing, one might want to incorporate this into the registration
procedure. Two different approaches can be distinguished. In the
first approach, a term is added to the cost function to penalize
non-cyclic transformations. In the other approach, cyclic motion is
enforced by adapting the transformation model. To the best of our
knowledge, only the first approach has been used in previous work.

1.3. Proposed method

In this work, we focus on the estimation of anatomical motion
from dynamic medical imaging data. For this, we assume that
physiologically motion is smooth (continuously differentiable)
over time. Finding this smooth motion is, for example, useful for
the construction of statistical motion models (Metz et al., 2010)
or motion visualization. The amount of smoothness depends on
the expected motion of the anatomy of interest and the expected
distortion of the motion due to pathology. Whereas the motion
of the anatomy is expected to be smooth, the appearance of the
moving anatomy in the reconstructed image may be non-smooth
because of imaging artifacts. In our registration approach, we use
a Lagrangian nD + t transformation model parametrized by B-
splines. The search space for the transformation that minimizes
the dissimilarity metric is thereby reduced to those transforma-
tions that are both spatially and temporally smooth.

With respect to the cost function, we choose the global ap-
proach to eliminate a bias towards a chosen reference frame and
use as much image information as possible. The use of a global cost
function automatically leads to the choice for a global optimization
routine.

A Lagrangian nD + t transformation model, a global cost func-
tion, and a global optimization routine have previously been ad-
dressed in literature for motion estimation in 4D medical
imaging data (see Table 1), but never jointly in one framework.
We additionally propose a cyclic version of the B-spline transfor-
mation model and investigate its influence on the registration
results.

The method is evaluated quantitatively on a 2D + t synthetic
image, 3D + t computed tomography (CT) images of the lungs
and 3D + t computed tomography angiography (CTA) images of
the heart. Further examples are presented on 2D + t ultrasound
(US) images of the carotid artery and 2D + t magnetic resonance
(MR) images of the lungs. To summarize, the main contributions
of this work are:
� The development and evaluation of a registration method for
motion estimation combining a Lagrangian nD + t B-spline
transformation model, a global cost function and global optimi-
zation strategy.
� The possibility to include a cyclic motion constraint that is

strictly enforced by the transformation model.
� The quantitative comparison of the proposed technique with

three well-known techniques.

Furthermore, the software developed for this publication is
publicly available.

2. Method

The proposed method is based on a 3D (2D + time) or 4D
(3D + time) free-form B-spline deformation model, incorporating
both the spatial and time dimensions. It aims to minimize the im-
age intensity changes over time. An implicit reference frame is
used to eliminate the need to choose a reference time point image.
The following subsections describe the different components of the
approach.

2.1. Transformation

A B-spline transformation model is used (Rueckert et al., 1999)
because the compact support of B-splines keeps the running time
reasonably low for higher dimensional imaging data. We restrict
the deformations to only take place in the spatial domain and
thereby search for those deformations that spatially align the dif-
ferent time point images. The deformation is regularized by assum-
ing smoothness of the deformation in both the spatial and
temporal direction of the data.

The D-dimensional input image is denoted with I(y), where
y ¼ ðxT ; tÞT 2 Rs � R denotes a coordinate in I which consists of a
spatial location x 2 Rs and temporal location t 2 R. D = s + 1 equals
the dimension of the spatiotemporal image data. The B-spline
based coordinate transformation Tl is defined as follows:

TlðyÞ ¼ y þ
X

yk2N y

pkb
rðy � ykÞ ð1Þ

with yk the control points, br(y) the rth order multidimensional B-
spline polynomial (Unser, 1999), pk the B-spline coefficient vectors,
and N y the set of all control points within the compact support of
the B-spline at y. The control points yk are defined on a D-dimen-
sional regular grid, overlaid on the image. The parameter vector l
consists of the collection of the first D � 1 elements of each pk.
The last element of every pk is fixed to zero making sure that only
deformations in the spatial domain are allowed. This is in contrast
to the work of Perperidis et al. (2005) and Peyrat et al. (2010),
where deformations in the temporal directions are allowed.

Optionally, cyclic motion can be enforced by letting the B-spline
polynomials wrap around in the temporal direction (see Fig. 1a and
b). This is achieved by adapting the definition of the control point
neigbourhood N y. A prerequisite for cyclic motion is that the num-
ber of time points of the image should be a multiple of the tempo-
ral B-spline control point spacing.

In the remainder of the paper the notation Tl(y) is interchanged
with Tl(x, t) for convenience of notation.

2.2. Dissimilarity metric

Because we are working with monomodal dynamic imaging
data, our method is based on the assumption that after correct reg-
istration the intensity values at corresponding spatial locations
over time are equal. This can effectively be measured by computing
the variance of intensity values at corresponding spatial locations
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over time (Bhatia et al., 2007). The dissimilarity metric, or cost
function, is therefore defined as:

CðlÞ ¼ 1
jSkT j

X
x2S

X
t2T

IðTlðx; tÞÞ � IlðxÞ
� �2 ð2Þ

with IlðxÞ the average intensity value over time after applying
transformation Tl:

IlðxÞ ¼
1
jT j

X
t2T

IðTlðx; tÞÞ ð3Þ

and S and T the set of spatial and temporal voxel coordinates
respectively.

2.3. Zero average displacement constraint

The registration is performed directly on the D-dimensional in-
put image, and does not require a reference image. This results in
an underconstrained optimization problem, because multiple solu-
tions exist for the minimization of the dissimilarity metric (Eq. (2)).
A translation of the image volume will, for example, not change the
metric value. We therefore constrain the average deformation in
time to be the identity transform, like (Bhatia et al., 2004 and Balci
et al., 2007a) did for groupwise registration:

1
jT j

X
t2T

Tlðx; tÞ ¼ x: ð4Þ

The next subsection explains how this constraint is enforced in
the optimization procedure.

2.4. Optimization

For the final solution we need to determine those transform
parameters that minimize the dissimilarity metric:

l̂ ¼ arg min
l

CðlÞ subject to ð4Þ: ð5Þ

Hereto, we use an adaptive stochastic gradient descent optimizer
(ASGD) (Klein et al., 2009). The main advantage of this optimizer
compared with conventional gradient-based optimizers is that it
applies random sampling of the data in the computation of the
derivatives, which causes a significant reduction in computation
time. This sampling strategy is applied to select the voxel locations
in S and the temporal indices in T . Note that new samples are
drawn at each iteration of the optimization.

The ASGD optimizer requires that the derivative of the cost
function with respect to l is known, which follows from differen-
tiating Eq. (2):

@C
@l
¼ 2
jSkT j

X
x2S

X
t2T
ðIðTlðx; tÞÞ � IlðxÞÞ

�
@IðTlðx; tÞÞ

@l
�
@IlðxÞ
@l

 !
ð6Þ

¼ 2
jSkT j

X
x2S

X
t2T
ðIðTlðx; tÞÞ � IlðxÞÞ

@IðTlðx; tÞÞ
@l

"

� @IlðxÞ
@l

X
t2T
ðIðTlðx; tÞÞ � IlðxÞÞ

#
ð7Þ

Substituting Eq. (3) in the last term of (7) results in:

@C
@l
¼ 2
jSjjT j

X
x2S

X
t2T
ðIðTlðx; tÞÞ � IlðxÞÞ

@IðTlðx; tÞÞ
@l

ð8Þ

To apply the constraint that the average deformation over the time
series is zero (see Section 2.3), we follow the approach of (Balci
et al., 2007a): we subtract the mean from each derivative vector,
causing the sum of B-spline coefficients to be zero. We therefore
use for every element i of @C(l)/@l the following equation to deter-
mine the constrained update:

@C
@li

0
¼ @C
@li

� 1
jQ ij

X
q2Qi

@C
@lq

ð9Þ

where Qi denotes the collection of all elements of l over time that
correspond to the same spatial grid point location and direction as
element i.

2.5. Inverse transformation

The zero average displacement constraint described in Sec-
tion 2.3 implicitly defines a reference frame that lies in the center
of the dynamics described by the image. After registration all time
point images are aligned in this reference frame. Depending on the
type of application the registration procedure is used for, it might
be useful to know transformation T ij

l which maps coordinates from
time point i to time point j. To be able to define this transformation,
the inverse mapping T�1

l , which maps coordinates from the input
image coordinate frame to the reference frame, needs to be known.

Because the inverse of a B-spline transformation cannot be de-
rived in closed-form, an additional subsequent optimization proce-
dure is applied, formulated in a way similar to the registration
procedure. The inverse transformation T�1

l̂ is derived by searching
for a B-spline transformation Tm that cancels T l̂, by minimizing the
following cost function:

FðmÞ ¼ 1
jYj
X
y2Y

kTmðT l̂ðyÞÞ � yÞk2
: ð10Þ

with Y the set of voxel locations. The result T m̂ of this minimization
is used as an estimate of T�1

l̂ . To make sure an accurate inverse can
be estimated one should prevent foldings in the transformations
resulting from the forward registration procedure. In this paper
we do this by choosing appropriate grid spacings, but one could also
consider adding a penalty term which incorporates constraints on
the Jacobian of the transformations (Chun et al., 2010; Sdika,
2008). As the inverse of a B-spline transformation cannot be mod-
elled exactly with another B-spline transformation, we choose a
smaller grid spacing for the inverse transform than was used for
the forward transform that aligns all time point images to yield
more accurate results.

The (D�1)-dimensional transformation Tij that aligns time point
image i with time point image j can now be derived by combining
the forward transform at time point j and the inverse transforma-
tion at time point i:

T ij
l̂ðxÞ ¼ T l̂ T�1

l̂ ðx; tiÞ
h i

x
; tj

� �h i
x

ð11Þ

where [�]x selects the (D�1)-dimensional part of the D-dimensional
transformation T.

2.6. Implementation details

Linear interpolation in the spatial domain is used for the deriva-
tion of intensity values at non grid-point positions in the images.

A multi-resolution strategy is employed to improve the capture
range and robustness of the registration. In the lower resolutions
the image is convolved with a Gaussian kernel. The standard devi-
ation of this kernel and the spacing of the B-spline grid in the spa-
tial directions of the image are reduced with a factor two in the
next resolution level. This multi-resolution approach is used for
both the registration procedure to align the time point images



Table 2
Image dimensions, average voxel sizes and parameter settings used in the experiments. The voxel size in the temporal direction was always set to 1.0 ‘mm’. The spatial grid
spacing for the inverse transformation in the synthetic experiments was chosen to be 1.0 mm smaller than the grid spacing for the forward transformation. The spatial grid
spacing for the inverse transformation in the other experiments was the listed grid spacing � 3.0 mm.

Dimensions Voxelsize (mm) Grid spacing (mm) r jSj jT j Iterations Res. levels Cyclic

Synthetic tube example 64 � 64 � 64 0.5 � 0.5 4 � 4 � 4 3 500 5 2000 2 (u)
2D + t US carotids 512 � 512 � 60 0.06 � 0.06 1 � 1 � 3 3 1000 5 2000 3
2D + t MR lungs 256 � 256 � 60 1.5 � 1.5 30 � 30 � 2 3 1000 5 2000 3
3D + t CT heart 256 � 256 � 160 � 20 0.7 � 0.7 � 0.8 15 � 15 � 1 2 2000 5 2000 4 (u)
3D + t CT lungs (POPI) 347 � 274 � 141 � 10 0.98 � 0.98 � 2.0 13 � 13 � 1/2/3 2 2000 5 2000 4 (u)
3D + t CT lungs (DIR-lab) 256 � 256 � 100 � 10 1.1 � 1.1 � 2.5 13 � 13 � 1/2/3 2 2000 5 2000 4 (u)
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and the optimization procedure to find the inverse B-spline
transformation.

The method has been implemented as an extension to the open
source registration package elastix (Klein et al., 2010) and is
freely available for download.1

3. Experiments and results

Three types of experiments were conducted to evaluate the pro-
posed method. First, we applied our approach to a synthetic image
to compare the results with existing registration approaches (Sec-
tion 3.3). Second, the performance of the method was quantita-
tively evaluated using publicly available 3D + t CT data of the
lungs (Section 3.4) and 3D + t CTA data of the heart (Section 3.5).
And third, further examples are presented on a 2D + t ultrasound
image of the carotid artery and a pediatric 2D + t MR image of
the lungs (Section 3.6).

For the experiments on the synthetic image, the cardiac CTA
data and the examples on ultrasound and MRI images, parameter
settings were empirically determined. For the experiments on
the CT data of the lungs, parameter settings were tuned on the
publicly available POPI-model (Vandemeulebroucke et al., 2007).
Resulting parameter settings and image dimensions are listed in
Table 2. Parameter files are online available in the parameter file
database of the elastix website.1

3.1. Registration approaches

In the experiments described in Sections 3.3 and 3.4, the pro-
posed registration method is compared with existing registration
approaches. The details of these approaches are outlined in the fol-
lowing paragraphs. The B-spline control point spacing, number of
resolution levels, and number of iterations were chosen to be the
same as the settings used for the proposed method to make a fair
comparison possible.

3.1.1. Reference time point registration method
In the reference time point registration method the individual

time point images are independently registered to the image of a
chosen reference time point. The method uses a Lagrangian (nD)
transformation model, a reference cost function and a pairwise
optimization strategy. Furthermore, a mean squared difference
metric was used, which is strongly related to the proposed vari-
ance metric.

3.1.2. Consecutive time point registration method
The consecutive time point registration method registers all

individual time point images to the image of the neighbouring time
point. It uses a Eulerian transformation model, a consecutive cost
function and a pairwise optimization strategy. When the time
point at which the registration is started is not equal to zero, reg-
1 http://elastix.isi.uu.nl.
istration is performed in two directions, to minimize the propaga-
tion of registration errors. A mean squares metric was used as the
cost function.

3.1.3. Groupwise registration method
The groupwise registration approach simultaneously aligns the

individual time point images. The method uses a Lagrangian (nD)
transformation model, a global cost function and a global optimiza-
tion strategy. The variance metric (Eq. (2)) is used as a cost function
and the zero average displacement constraint (Eq. (4)) is applied.
This approach is most similar to the proposed method, but does
not impose smoothness of the deformations in the temporal direc-
tion of the image nor cyclic motion.

3.2. Evaluation measures

We used two evaluation measures for the synthetic experiment
and the experiment on the lung data: the primary measure is the
accuracy of the registration results and the secondary measure is
the temporal smoothness of the transformations. Whereas
smoothness on its own does not reflect the quality of the registra-
tion, the relation between registration accuracy and smoothness is
relevant, as it can be useful when deciding on the right registration
strategy for the application of interest. With equal, or slightly
worse accuracy, a smoother result is often preferred.

The accuracy for transformation parameters l was defined as
the mean target registration error (mTRE) (van de Kraats et al.,
2005) between a set of landmark collections P = {P1,P2, . . .,PT} for
time points {1, . . .,T} and landmarks transformed from a reference
time point r to all time points for which the landmarks are
available:

mTREðlÞ ¼ 1
TjP1j

X
t–r

X
pt;i2Pt

T rt
l ðpr;iÞ � pt;i

��� ���; ð12Þ

with pt,i landmark i in time point t and r the reference time point.
The smoothness of transformation Tl was measured as the

irregularity of the landmark trajectories:

mIrrðlÞ ¼ 1
TjP1j

XT

t

X
pt;i2Pt

@2T rt
l ðpr;iÞ
@t2

�����
�����

2

; ð13Þ

with pt,i landmark i at time point t and r the reference time point.
Higher values mean more irregular/less smooth trajectories. We
computed the derivatives using finite differences to be able to com-
pute the irregularity for all considered registration procedures.

The standard deviation of TRE and irregularity values were also
derived.

3.3. Quantitative evaluation on synthetic data

The 2D + t synthetic example consists of a 64 � 64 � 64 pixel
image containing a circle with a Gaussian profile with a standard
deviation of three voxels. The circle follows a cosine shaped trajec-

http://elastix.isi.uu.nl


Fig. 2. Registration results for the experiment on a synthetic image. A cross section of the input image is shown in the left top image. The other images show the trajectory
resulting from the registration procedure as a solid line. The reference standard is plotted with a dashed line and the title of the plot lists the mean and standard deviation of
the accuracy in mm and irregularity in mm/s2 of the registration results.
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tory over time in the Y-direction of the image, i.e. the center of the
circle over time is (xc,yc + acos(2pt/w)), with a = 3,
xc = yc = 15.5 mm and w = 32 mm. The cosine is positioned in such
a way that the deformation over time is cyclic. The contrast be-
tween the tube and the background is 1000 and Gaussian noise
was added with a standard deviation of 150 resulting in a con-
trast-to-noise ratio of 20

6 . A cross section of the resulting 2D + t im-
age is shown in Fig. 2. Seven registration procedures were tested.
The first four are the consecutive and reference approach (Sec-
tion 3.1) using both times 0 and 31 (halfway the time dimension
of the data) as reference time point. The fifth is the groupwise reg-
istration method (Section 3.1). The last two approaches are the
non-cyclic and cyclic version of the proposed registration method.
After registration both the accuracy (Eq. (12)) and irregularity (Eq.
(13)) of the transformations were determined.

The X-displacements and Y-displacements found by the differ-
ent registration procedures are plotted in Fig. 2. The dashed line
shows the reference curve. The titles of the plots show both the
accuracy and irregularity. It can be noticed that the 2D reference
method works reasonably well with respect to the accuracy, but
the resulting trajectory is not smooth. The 2D consecutive method
is distracted by the image noise and delivers inaccurate results.
Among the non-temporally smooth methods the groupwise regis-
tration method performs best with respect to both accuracy and
smoothness, which may be caused by the more robust global dis-
similarity metric. The proposed temporally smooth method has
the highest accuracy and delivers the most smooth trajectories of
all methods. Accuracy is even slightly improved by imposing cyclic
motion.
3.4. Quantitative evaluation on 3D + t CT data of the lungs

Four quantitative experiments were performed on clinical
3D + t CT data of the lungs. The first two experiments assess the
accuracy, smoothness, and consistency of the registration results.
In the third experiment, the influence of the spatial grid spacing
used to obtain the inverse transformation was investigated. In
the last experiment, the transitive consistency of the method is
evaluated and compared with the reference registration method.
The publicly available POPI-model (Vandemeulebroucke et al.,
2007) and DIR-lab data were used (Castillo et al., 2009). Both con-
sist of 3D + t CT scans of the lungs and corresponding landmarks in
two or more time points of the image. For the DIR-lab data 300
landmarks in time points 0 (inspiration) and 5 (expiration) and
75 landmarks for each time point between time points 0 and 5
were available. For the POPI-model 37 landmarks for all ten time
points were available. Parameter settings were tuned on the POPI
image and subsequently used for all six images.
3.4.1. Accuracy
Registration accuracy was evaluated by computation of the TRE

(Section 3.2) between the reference landmark positions and the
landmark positions propagated from time point 0 (DIR-lab data)
or time point 1 (POPI-model) to all other time points. The reference
time point for these propagations was chosen according to previ-
ously published work on this data. The results of the proposed
method are compared with the reference time point, consecutive
time point and groupwise registration methods described in Sec-
tion 3.1. For the proposed method, registration was always per-
formed on the complete 4D image and using a lung mask. For
the POPI-model the provided mask was used. For the DIR-lab
images the masks were created by thesholding, connected compo-
nent analysis and morphological closing using a spherical structur-
ing element with a diameter of nine voxels. During the registration
procedure the sample locations x are drawn from a dilated version
of these masks (kernel radius of 13 voxels). Moreover, Tl(y) should
lie within the non-dilated mask to be taken into account for the
computation of the variance metric. Registration was performed
for grid point spacings of one, two and three time points in the
time-dimension and with and without applying the cyclic motion
constraint to quantify the effect of the temporal and cyclic smooth-
ness on the results.

Results for the 300 two-time-point landmarks of the DIR-lab
data are presented in Table 3. Results for the 75 landmarks in six



Table 3
Average and standard deviation of target registration errors in mm for the 300 landmarks in two-time points of the DIR-lab images using the proposed method with three
different temporal control point spacings and with and without the cyclic motion constraint. Results are compared with the reference time point, consecutive time point, and
groupwise registration approaches. The best previously published results are listed in the last row of the table.

DIR-lab case 1 DIR-lab case 2 DIR-lab case 3 DIR-lab case 4 DIR-lab case 5

Initial 3.89 (2.78) 4.34 (3.90) 6.94 (4.05) 9.83 (4.85) 7.48 (5.50)

Temp. spacing of three time points (non-cyclic) 1.09 (0.53) 1.12 (0.61) 1.29 (0.70) 1.86 (1.34) 2.06 (1.97)
Temp. spacing of two time points (non-cyclic) 1.05 (0.50) 1.09 (0.60) 1.28 (0.82) 1.73 (1.34) 1.82 (1.56)
Temp. spacing of one time point (non-cyclic) 1.02 (0.47) 1.06 (0.55) 1.21 (0.68) 1.57 (1.20) 1.70 (1.48)

Temp. spacing of three time points (cyclic) 1.05 (0.49) 1.30 (0.83) 1.57 (1.01) 2.52 (2.23) 2.49 (2.22)
Temp. spacing of two time points (cyclic) 1.04 (0.48) 1.16 (0.70) 1.35 (0.77) 1.86 (1.44) 2.12 (1.85)
Temp. spacing of one time point (cyclic) 1.02 (0.50) 1.06 (0.56) 1.19 (0.66) 1.57 (1.20) 1.73 (1.49)

Groupwise 1.02 (0.49) 1.07 (0.56) 1.22 (0.68) 1.56 (1.19) 1.74 (1.47)
3D reference time point 0.99 (0.48) 0.96 (0.49) 1.11 (0.62) 1.49 (1.08) 1.37 (1.21)
3D consecutive time points 1.15 (0.60) 1.06 (0.62) 1.27 (0.68) 1.55 (1.17) 1.82 (1.59)

Castillo et al. (2010) 0.97 (1.02) 0.86 (1.08) 1.01 (1.17) 1.40 (1.57) 1.67 (1.79)

Table 4
Average and standard deviation of target registration errors in mm for the 75 landmarks in six time points of the DIR-lab images and for the 37 landmarks in ten time points of the
POPI-model using three different temporal control point spacings and with and without the cyclic motion constraint. Results are compared with the reference time point,
consecutive time point, and groupwise registration approaches. The best previously published results are listed in the last row of the table.

POPI DIR-lab case 1 DIR-lab case 2 DIR-lab case 3 DIR-lab case 4 DIR-lab case 5

Initial 3.68 (2.97) 2.18 (2.54) 3.78 (3.69) 5.05 (3.81) 6.69 (4.72) 5.22 (4.61)

Temp. spacing of three time points (non-cyclic) 1.13 (0.59) 1.12 (0.75) 1.09 (0.73) 1.24 (0.69) 1.65 (1.12) 1.89 (1.74)
Temp. spacing of two time points (non-cyclic) 1.03 (0.56) 1.02 (0.70) 1.05 (0.70) 1.20 (0.68) 1.47 (1.03) 1.68 (1.49)
Temp. spacing of one time point (non-cyclic) 1.02 (0.58) 0.95 (0.66) 1.00 (0.62) 1.15 (0.61) 1.39 (1.02) 1.50 (1.32)

Temp. spacing of three time points (cyclic) 1.22 (0.79) 0.97 (0.71) 1.54 (1.30) 1.73 (1.28) 2.82 (2.29) 2.33 (1.99)
Temp. spacing of two time points (cyclic) 1.07 (0.58) 0.96 (0.71) 1.11 (0.77) 1.22 (0.71) 1.62 (1.15) 1.84 (1.64)
Temp. spacing of one time point (cyclic) 1.02 (0.58) 0.95 (0.66) 1.00 (0.62) 1.14 (0.61) 1.40 (1.02) 1.50 (1.31)

Groupwise 1.00 (0.56) 0.94 (0.65) 1.01 (0.61) 1.14 (0.63) 1.41 (1.04) 1.49 (1.30)
3D reference time point 0.95 (0.56) 0.93 (0.65) 0.89 (0.51) 1.05 (0.56) 1.40 (1.10) 1.27 (1.10)
3D consecutive time points 1.47 (1.08) 0.97 (0.71) 0.98 (0.61) 1.17 (0.66) 1.37 (0.97) 1.46 (1.40)

Kabus et al. (2009) 0.96 (0.56) n.a. n.a. n.a. n.a. n.a.
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time points of the DIR-lab data and for the 37 landmarks in 10 time
points of the POPI-model are listed in Table 4. For comparison, the
initial TRE and the best published results on the POPI-model (Ka-
bus et al., 2009) using 3D B-spline registration and on the DIR-
lab data (Castillo et al., 2010) using a four-dimensional optical flow
method based on trajectory modeling are included in the tables.
Both tables show that the proposed method can achieve subvoxel
accuracy, yielding TRE values that are similar to the best published
results on the same data. The results for the proposed method
without the use of the cyclic motion constraint show that temporal
smooth deformations can be achieved by compromising only
slightly on registration accuracy. Enabling the cyclic motion con-
straint helps for DIR-lab case 1, but decreases the accuracy for
the other cases.

The average running time on the DIR-lab data is around 40 min
for the 3D reference, consecutive and groupwise registration ap-
proaches and around 1 h, 1 h and 15 min, and 1 h and 30 min for
the proposed method while using a temporal spacing of 3, 2 and
1 time points respectively (AMD Opteron� 2216 2400 MHz). The
increase in computation time while using smaller temporal grid
spacings is mainly due to the larger size of l. A visualization of
the imaging data before and after registration is shown in Fig. 3.
3.4.2. Smoothness
The registration results of Section 3.4.1 were subsequently used

to determine the smoothness of the landmark trajectories by com-
puting their irregularity (Eq. (13)). The results are shown in a bar
chart in Fig. 4. Every bar represents one of the registration ap-
proaches and every group of bars represents a certain test image.
The proposed method results in the most smooth trajectories. It
can be seen that increasing the temporal spacing of the B-spline
grid improves the temporal smoothness. The inclusion of the con-
straint on cyclic motion reduces the irregularity even further for
larger temporal control point spacings. Furthermore, it can be no-
ticed that the 3D reference registration method performs worst in
this sense.

3.4.3. Inverse transformation
An experiment was conducted in which different spatial control

point spacings for computation of the inverse transformation were
tested. The result of the proposed method using a temporal control
point spacing of 2.0 time points and the cyclic motion constraint
from the previous sections was used as the forward transforma-
tion. Evaluation was performed on the POPI-model. We tested spa-
tial control point spacing for the inverse computation ranging from
13.0 mm (the spacing of the forward transform) to 7.0 mm. Subse-
quently, we computed the accuracy and irregularity of the results
(Section 3.2), and the inverse errors. The multi-resolution strategy
was the same as was used for the forward registration procedure.
The inverse error was defined as the average magnitude of the
transformation vector after subsequent transformation with the
forward and inverse transform. Errors were computed for all voxel
positions within the mask used in the registration. Results are
shown in Fig. 5. The dashed lines show the mean ± the standard
deviation of the TRE and irregularity values.

3.4.4. Transitive consistency
The registration results of the reference registration approach

(Section 3.1) will depend on the chosen reference image. The
choice of different reference images may thus lead to inconsistent
results, where we define registrations transitive consistent when
for all i; j 2 T and all x 2 S:



Fig. 3. Registration result for a 3D + t CT image of the lungs. Left: input image, right: registration result. Image (a) and (b) show the dotted lines in the left image over time.
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T ijðTkiðxÞÞ ¼ TkjðxÞ: ð14Þ

approach (solid line) and for the proposed registration method (dashed line). For
visualization purposes the maximum value at the x-axis was set to 1.0 and the
maximum value at the y-axis was set to 0.05. The dashed vertical lines indicate the
average error for both approaches.
In the proposed method all time points are aligned simultaneously
without the use of a reference time point, but there still remains an
inconsistency, which is caused by errors in the approximation of the
inverse transform.

To assess the inconsistency of both the reference time point and
proposed cyclic approach, we performed an experiment on the
POPI image. We computed the inconsistency errors as:

EijðxÞ ¼ kT ijðTkiðxÞÞ � TkjðxÞk ð15Þ

for all k 2 {1, . . . ,T}, all voxel positions and all i – j. For the 3D refer-
ence approach, Tij were computed by pairwise 3D registration for all
i, j. For the proposed method the Tij were computed according to Eq.
(11). Similar settings were used for both registration approaches.
Results of these experiments are shown in a histogram in Fig. 6 with
a solid line for the consecutive registration approach and a dashed
line for the proposed registration method. The dotted vertical lines
indicate the average inconsistency error for both approaches. The
inconsistencies for the proposed registration approach are in gen-
eral smaller, which is apparent from the peak in the left of the his-
togram and the smaller average error value. The consistency errors
for the 3D reference method could decrease with methods such as
proposed by Christensen et al. (2001) and Geng et al. (2005).

3.5. Quantitative evaluation on 3D + t CTA data of the heart

An experiment was performed to assess the accuracy of semi-
automatic derivation of left ventricular volume curves from
3D + t CTA data of the heart. To this end, the left ventricle was
manually annotated for five patients at 10 time points in the car-
diac cycle. The curves describing the left ventricular volume over
the cardiac cycle were determined from these manual annotations.
Subsequently, these curves were also generated by propagating the
end-diastolic manual annotation to all other time points using the
transformation resulting from the registration procedures. The
proposed method was used both with and without imposing cyclic
motion. Registration was performed in a two-step approach. First
the registration was performed on the whole 4D image. Subse-
quently, an atlas based segmentation of the heart surface at end-
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diastole (Kirisli et al., 2010) was propagated to the whole sequence
using the resulting transformation. In the second step the 4D
registration was performed while using the 4D heart mask for
computation of the dissimilarity metric, to be able to handle the
non-smooth sliding motion of the heart along the lung surface.

The left ventricular volume curves derived from semi-automat-
ically determined left ventricle surfaces and the manual measure-
ments can be found in Fig. 7. The average and standard deviation of
the volume error was 3.02% (±2.46%) and 3.02% (±2.49%) for the
cyclic and non-cyclic registration approach respectively. An exam-
ple of the imaging data before and after registration is shown in
Fig. 8.
3.6. Further examples on clinical data

To show the potential of the proposed registration method on
other imaging modalities, registration was performed on a 2D + t
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Fig. 7. Left ventricular volume curves derived from 3D + t CTA data. Circles: manu

Fig. 8. Registration result for a 3D + t CTA image of the heart. Left: input image, right: reg
The time varying noise levels, which are caused by variation of dose over the cardiac cycl
more challenging. Note that the left side of images (b) falls outside the heart mask used
ultrasound (US) image of the carotid artery and a pediatric 2D + t
magnetic resonance (MR) image of the lungs.

The US image of the carotid artery was acquired to measure the
distensibility of the carotid artery (Gamble et al., 1994). This re-
quires the accurate estimation of the vessel wall deformation.
Images before and after registration are shown in Fig. 9.

The MR image of the lungs was acquired to analyze lung func-
tion in cystic fibrosis patients, which requires measuring the com-
pression and decompression of the lungs over the respiratory cycle
(Failo et al., 2009). The input image and the results after registra-
tion are shown in Fig. 10. The resulting images still show some
misalignment, visible on the right side in image (a), caused by
the anatomy moving in and out the field of view.

4. Discussion

A registration method for motion estimation in dynamic
medical imaging data combining a Lagrangian nD + t B-spline
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istration result. Image (a) and (b) show the dotted lines in the left image over time.
e (ECG-pulsing) (Weustink et al., 2009), are clearly visible and make the registration

in the registration.



Fig. 9. Registration result for a 2D + t ultrasound image of the carotid artery. Left: input image, right: registration result. Image (a) and (b) show the dotted lines in the left
image over time.

Fig. 10. Registration result for a pediatric 2D + t MRI image of the lungs. Left: input image, right: registration result. Image (a) and (b) show the dotted lines in the left image
over time.
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transformation model, a global cost function and global optimiza-
tion strategy has been proposed and quantitatively evaluated.

In a synthetic experiment we compared the proposed approach
with other existing registration approaches. It is demonstrated that
the temporal smoothness and the constraint on cyclic motion help
the registration when images are distorted by noise. Furthermore,
the proposed method yields temporally smooth (continuously dif-
ferentiable) transformations.

Quantitative experiments on 3D + t CT data of the lungs
showed that the method was able to derive the dynamics from
the images with subvoxel accuracy, which is comparable to pre-
viously published results of other state of the art image registra-
tion methods on the same data. Furthermore, it shows that
temporally smooth results can be achieved by only compromising
slightly on registration accuracy. The temporal smoothness of the
results can be regulated by adapting the temporal control point
spacing, which can be chosen in such a way that it takes into ac-
count the expected smoothness of the motion of the anatomy.
This prevents the method to fit the transformation to errors in
the imaging data, such as acquisition artefacts. Furthermore, cyc-
lic motion can be enforced. We showed that this was only bene-
ficial for one of the DIR-lab cases. A possible explanation for the
decrease in accuracy for the other cases can be that the data is
not as cyclic as expected, which is also suggested by the relatively
low temporal smoothness for the non-cyclic results of DIR-lab
case 5 (see Fig. 4). The use of cyclic motion constraints should
therefore be considered carefully for the application of interest.
It should be noted that previously published results on the DIR-
lab data are not directly comparable to the values derived in this
paper, because only a subset of 300 from the approximately 1200
3D landmarks is publicly available. We do, however, expect these
300 landmarks to be a representative subset and the results
therefore to be representative as well. Also, we computed all
TRE values in world coordinates, while (Castillo et al., 2010)
round the transformed landmark coordinates to the closest voxel
coordinate first. If we would follow their approach, the average
values for our results would be the same and the standard devi-
ations would be around 0.4 mm larger. In an experiment on the
POPI-model, we showed that the proposed method outperforms
the often used reference time point method with respect to reg-
istration consistency. This is caused by the use of a global cost
function, avoiding a bias towards a specifically chosen reference
time point.

Further quantitative experiments on 3D + t CTA data of the
heart showed the ability of the method to semi-automatically
determine left ventricular volume curves with only a deviation
from manually derived curves of approximately 3%. These devia-
tions may be partly explained by errors in the manual annotations,
because outlining the left ventricle is especially challenging at the
location of the atrioventricular valves during fast moving phases of
the cardiac cycle. Furthermore, contrary to the registration meth-
od, temporal continuity is not taken into account during manual
annotation.

Examples on 2D + t ultrasound and MR images showed the po-
tential of the method for other imaging modalities. Because the
method is publicly available as an extension to elastix, it can
readily be applied by other researchers to various types of dynamic
medical imaging data.

We also described an approach to approximate an inverse B-
spline transformation, which was used to find the relation between
time points in the input image. Based on the application of interest
one can choose to perform analyses on the registered image di-
rectly or relatively to a chosen reference time point. The errors of
the inverse transformation were shown to be very small and even
smaller when choosing a somewhat smaller spatial grid spacing for
obtaining the inverse transformation than was used in the forward
registration procedure. The accuracy was almost not affected by
this smaller spacing, but a small effect on the smoothness of the re-
sults was noticed.

The method builds upon groupwise registration approaches,
with the main difference that the smoothness in the temporal
direction of the data is incorporated and that the transformations
can be constrained to be cyclic. The advantage of this approach is
that the alignment of the data does not depend on a chosen refer-
ence time point. Although the deformations between the time
points and the used implicit reference frame might be larger than
the deformations between consecutive time frames, this does not
seem to affect registration robustness. This is most probably an ef-
fect of the temporal smoothness which helps to find these larger
deformations. Additionally, these deformations are still relatively
small compared with the inter-patient differences in groupwise
registration. The error introduced when establishing the relation
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between time points in the input image through application of the
inverse transformation was shown to be much smaller than the
consistency errors made using the 3D reference registration
approach.

Additional constraints on the transformation can be taken into
account by adding extra penalty terms to the cost function (Bisto-
quet et al., 2008; Mansi et al., 2009; Sdika, 2008). These penalty
terms could, for example, ensure inverse consistent transforma-
tions or impose biomechanical constraints on the transformations.
This depends on the application, and is not pursued in our work.

It should be mentioned that the assumption of constant inten-
sity over time does not hold in perfusion imaging, where contrast
flow can cause the same anatomy to have a different appearance
over time. The development of a similarity metric that accounts
for contrast influx would therefore be an interesting future re-
search direction as our groupwise nD + t B-spline framework can
accommodate different similarity measures, which may be se-
lected based on different assumptions.
5. Conclusions

A registration method combining a Lagrangian nD + t B-spline
transformation model, a global cost function and global optimiza-
tion strategy for motion analysis in dynamic medical imaging data
was proposed. It takes smoothness into account in both the spatial
and temporal direction of the data. Moreover, it can enforce the
transformations to be cyclic. Registration accuracy and smoothness
were assessed using a synthetic image, publicly available imaging
data of the lungs and imaging data of the heart. On the synthetic
image, the best results with respect to accuracy and smoothness
were achieved using the proposed method while imposing cyclic
motion. On the lung data, the accuracy was found to be comparable
to previously reported results and the smoothness was found to be
best when using the proposed approach. Furthermore, it was
shown that the proposed method performs better than the refer-
ence time point registration method with respect to the consis-
tency of the registration results. Regarding the cardiac CTA data,
semi-automatically derived left ventricular volume curves showed
a deviation of approximately 3% with respect to the curves derived
from manual annotations. Further examples were shown on a
2D + t US image of the carotid artery and a 2D + t MR image of
the lungs. The software is publicly available as an extension to
the registration package elastix.
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