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Nonlinear registration algorithms provide a way to estimate structural (brain) differences based on magnetic
resonance images. Their ability to align images of different individuals and across modalities has been
well-researched, but the bounds of their sensitivity with respect to the recovery of salient morphological dif-
ferences between groups are unclear. Here we develop a novel approach to simulate deformations on MR
brain images to evaluate the ability of two registration algorithms to extract structural differences corre-
sponding to biologically plausible atrophy and expansion. We show that at a neuroanatomical level registra-
tion accuracy is influenced by the size and compactness of structures, but do so differently depending on how
much change is simulated. The size of structures has a small influence on the recovered accuracy. There is a
trend for larger structures to be recovered more accurately, which becomes only significant as the amount of
simulated change is large. More compact structures can be recovered more accurately regardless of the
amount of simulated change. Both tested algorithms underestimate the full extent of the simulated atrophy
and expansion. Finally we show that when multiple comparisons are corrected for at a voxelwise level, a very
low rate of false positives is obtained. More interesting is that true positive rates average around 40%, indicat-
ing that the simulated changes are not fully recovered. Simulation experiments were run using two funda-
mentally different registration algorithms and we identified the same results, suggesting that our findings
are generalizable across different classes of nonlinear registration algorithms.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The structure and shape of the brain and its parts have been
shown to be related to its function. Magnetic Resonance Imaging
(MRI) allows the measurement of the intact brain's structural proper-
ties with high precision (Henkelman, 2010; Nieman et al., 2011). One
MRI-based technique for probing shape differences in the brain, pre-
dominant in the study of animal models, is image registration (Badea
et al., 2007; Chen et al., 2006; Lerch et al., 2008; Pitiot et al., 2007).
Neuroanatomical differences between groups of subjects can then be
estimated using deformation based morphometry (DBM) (Ashburner
et al., 1998). Briefly, DBM works as follows. First, the MR images are
aligned to a common registration target/template or one of the input
images using affine transformations. Then a nonlinear registration is
used for increasingly precise alignment to the target. This final registra-
tion yields the deformation fields which are then input into statistical
analysis. The linear components of the deformation fields can be
removed to account for overall differences in size and position. The
an Eede).
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Jacobian determinant of the deformation fields is often of interest as it
summarizes the shape differences as expansions and contractions.

The lissencephalic mouse brain is homologous between individual
mice, making DBM a particularly well suited method to capture dif-
ferences in mouse brains. For example, Mercer et al. (2009) examined
brain differences related to the Magel2 gene, a gene that plays a role
in cell differentiation and cell death. Several brain structures, such
as the amygdala, the dentate gyrus and the nucleus accumbens
were found to be 4–5% smaller in the mutants. The GSK-3α null mu-
tants in Kaidanovich-Beilin et al. (2009) were shown to have the
arbor vita enlarged by 9% and the pons by 5% as compared to their
wild types litter mates. The gene products of GSK-3 are essential for
cerebellar development and foliation. Mansouri et al. (2012) studied
the effects of deficiencies in purine nucleoside phosphorylase (PNP)
on the brain. Inherited defects in PNP in humans cause progressive
neurological dysfunction. In their study regions in the cerebellum
were shown to be about 15% smaller in PNP-knockout mice compared
to wild type litter mates. In Spring et al. (2010) asymmetries in the
mouse brain were investigated using DBM, which among others
revealed an area in the cortex with a 15.5% difference between the
left and right hemisphere.

http://dx.doi.org/10.1016/j.neuroimage.2013.06.004
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In the human brain with its complex and idiosyncratically folded
cortex only subcortical structures may be homologous between sub-
jects, however, DBMhas been applied extensively on humanMR data
as well and is especially useful for longitudinal data (Brambati, 2009;
Hyde et al., 2009; Kim, 2008; Tao, 2009).

Several studies have shown the superior effectiveness of MRI com-
bined with automated image registration in comparison to stereology
or manual segmentations in mice (Lau et al., 2008; Lerch et al., 2008;
Spring et al., 2007). Other research, focused on human brain imaging,
has compared the performance of multiple image registration packages
based on a set of gold standard labels (Allen et al., 2008; Andreasen
et al., 1996; Babalola et al., 2009; Bai et al., 2012; Christensen et al.,
2006; Crum et al., 2004; Fischl et al., 2002; Heckemann et al., 2006;
Hellier et al., 2003; Iosifescu et al., 1997; Klein et al., 2009; Ma et al.,
2005; Quarantelli et al., 2002; Yassa and Stark, 2009). Calculating
how accurately registration algorithms can reproduce gold standard
segmentations, however, does not provide a direct estimation of their
sensitivity to detecting changes in neuroanatomy, because overlap
measures of labels cannot make inferences about the accuracy of regis-
trations within those regions. To address that, Karacali and Davatzikos
(2006) and Camara et al. (2006) have proposedmethods to simulate at-
rophy on medical images. Their methods provide means to evaluating
the sensitivity and accuracy of image registration techniques by simu-
lating atrophy in a brain structure and subsequently trying to recover it.

Given the widespread use of DBM to investigate volumetric
neuroanatomical differences in human and animal studies, we set
out to assess its accuracy. Here we introduce a novel method to sim-
ulate atrophy and expansion in arbitrary areas in MR images and uti-
lize this method to perform simulation experiments. The following
seven points are addressed: 1) We evaluated how reliably image
registration can recover change in the mouse brain by simulating
atrophy in anatomical brain structures of a mouse brain atlas (Dorr
et al., 2008). 2) Next we looked at how accurately the amount of sim-
ulated atrophy can be determined in the brain structures and how
this depends on the size/shape/contrast at the boundaries of the
structures. 3) We evaluated the influence that inherent variability in
inbred mouse strains has on the recovery of simulated atrophy in
brain structures, and 4) whether we systematically over- or underes-
timate simulated atrophy and expansion. 5) The simulation experi-
ments were performed using two nonlinear registration methods to
address the generality of our results. 6) Multiple comparison correc-
tions were performed at a voxel level to determine the number of
true and false positives. 7) Lastly, a small focal amount of atrophy
was simulated in one half of a brain slice to investigate the impact
of image features on the performance of image registration. The re-
sults demonstrate that three pieces of information influence the accu-
racy of registration on whole anatomical regions (size, compactness
and inherent variability), and that while the accuracy of registration
based measures of anatomy is impressive, not all simulated changes
can be fully recovered.

Methods

Image acquisition

In this paper the simulation experiments used MRI scans acquired
from20C57/bl6malemice of young adult ages of 8–10 weeks [specimen
preparation as in (Cahill et al., 2012)]. A multi-channel 7.0 T, 40 cm
diameter bore magnet (Varian Inc. Palo Alto, CA) was used to acquire
the anatomical images. A custom-built 16-coil solenoid array
was used to image 16 samples concurrently (Lerch et al., 2011a).
Parameters used in the scans were optimized for gray–white
matter contrast: a T2-weighted 3D fast spin-echo sequence, with
TR = 2000 ms, echo train length = 6, TEeff = 42 ms, field-of-view
(FOV) = 25 × 28 × 14 mm and matrix size = 450 × 504 × 250,
giving an image with 56-micron isotropic voxels and an optimal
signal to noise ratio (SNR) in the order of 40 (Kale et al., 2008).
Total imaging time was 11.7 h. Scans were corrected for geometric
distortions generated by the image acquisition process based on
images of precision machined phantoms.

Creating an artificial deformation field

Atrophy and expansion were simulated by applying an artificial
deformation field that produced the desired levels of volumetric
loss and expansion (inspired by (Karacali and Davatzikos, 2006), see
Fig. 1). First, a desired Jacobian determinant was generated for a
region of interest (ROI). The Jacobian determinant of a deformation
field specifies whether the change in each voxel is due to atrophy or
expansion (Davatzikos et al., 1996). Voxels belonging to the ROI
received either a reduced determinant (less than 1; atrophy), or an
increased determinant (greater than 1; expansion). The remaining
brain voxels received a determinant of 1 (no change). Next, a zero-
vector deformation field was initialized. In an iterative procedure,
the Jacobian determinant was calculated from the artificial deforma-
tion field and the vectors of each voxel's six nearest neighbors were
adjusted to yield the approximate input determinant. To keep intra-
cranial space constant, we created a tolerance map comprising the ven-
tricles and the space between brain and skull (subarachnoid space) and
allowed these areas to deform. To preserve topology, the volume
change in these areas was limited to 50% of their original size.

The twenty mouse brain MRI scans were divided into two groups
(mutants and controls) that minimized the structural differences
between the groups. We simulated volume changes on two spatial
scales; whole anatomical regions and focal spots.

First we induced three levels of atrophy (5, 10 and 20%) in 59
out of the 62 structures defined in Dorr et al. (2008). The 3 ventricle
areas were left out and used as tolerance space. Two levels of expan-
sion (5 and 10%) were induced in 14 randomly chosen structures with
a size of at least 1 mm3. Controls remain unchanged. Registrations at 5%
atrophy were run using two registration algorithms, resulting in 236
registrations on simulated atrophy. 28 registrations were run on simu-
lated expansion, totalling 264 registrations. A single registration took
approximately 100 CPU hours, resulting in a total of about 26,400 h in
single CPU time. This is equivalent to several weeks of processing on a
mid-sized cluster of about 10 machines with an 8-core processor each.

Secondly, we induced focal atrophy in the mutants, the center of
the simulated atrophy located at each voxel in one half of an axial
brain slice (see Fig. 8). This change consisted of a 90% volume decrease
in a discrete octahedron (radius of 3.5 voxels, volume of 63 voxels)
translating into a 0.08 mm3 volume loss. For computational efficiency,
the data were resampled to 112-micron isotropic voxels. The entire
axial brain slice contained 7640 brain voxels. We ran simulations in
the left hemisphere of that slice, resulting in 3820 registrations. To en-
sure that our results displayed symmetry between the left and right
hemisphere, we ran an additional 220 simulations in a rectangle in
the right hemisphere. In total we ran 4040 registrations. Each registra-
tion at this coarser resolution took about 25 h of CPU time, totalling
about 101,000 h of single CPU time for all registrations. This is equiva-
lent to several months of processing on amid-sized cluster. All process-
ing was significantly sped up by using the GPC supercomputer at the
SciNet HPC Consortium (Loken et al., 2010).

Image registration procedure

Amulti-step image registration process was used to align the brains
and create a consensus average (Kovačević et al., 2005). First, all brains
were rigidly registered towards a pre-existing mouse brain average
image. Then all possible pairwise 12-parameter registrations were
carried out to create a linear average model of the entire data set. This
linear average was the initial target for the final part of the registration.
Here the scans were locally deformed through a mutli-scale nonlinear



Fig. 1. Simulating atrophy in the striatum of the mouse. (A) A T2-weighted axial slice with the striatum highlighted in blue, neighboring ventricles and subarachnoidal volume
are highlighted in red. The volume of the striatum is decreased (atrophy) by 20% and the volume of the ventricles and subarachnoidal volume are increased to minimize changes
in other brain areas. Inset in the right lower corner indicates the position of the shown slice in the mouse brain. (B) A close-up shows the striatum and lateral ventricle area with the
simulated deformation grid in green. (C) Surface rendering of the striatum. Change: 10% increase (red), 5% increase (pink), 5% decrease (light blue), and 10% decrease (dark blue).
Note the very subtle shift in the surface of the striatum. (D) 4-panel image shows the striatum shrunk by 10%, 5% and increased by 10% and 5%. A close-up shows the original
striatum with the contours of the 4 altered striatums overlaid. (E) Evolution of volume change in the entire brain during the iterative optimization of the simulated deformation
field. The ventricular and subarachnoidal volumes increase to compensate for the decreasing striatal volume. This allows the rest of the brain to remain unchanged in volume.
All scale bars in left lower corners represent 500 μm.
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alignment procedure. After each iteration the images were averaged
and the resulting atlas was used as the target for the next nonlinear
iteration. This ensured that all scanswere brought into exact correspon-
dence without the preference for the shape of any particular input file.
The deformation fields that were extracted for the scans hold the
transformation that aligns them with the final atlas. We analyzed
the Jacobian determinant of the extracted deformation fields to de-
termine the difference that is recovered by the registration proce-
dure between the two groups.

To demonstrate the generality of our results, we performed our
simulation experiments using two fundamentally different registra-
tion algorithms. The first nonlinear registration procedure we used
came from the Advanced Normalization Tools (ANTs) (Avants et al.,
2008). This method came out as the best nonlinear registration method
among14different algorithms (Klein et al., 2009). In particular,weused
symmetric normalization, a diffeomorphic model, using as similarity
metrics a combination of cross correlation on the regular image intensi-
ties and cross correlation on the 3D gradient magnitudes. A Gaussian
regularizer was used that operates both on the similarity metric and
on the deformation field. The second method, the Automatic Nonlinear
ImageMatching and Anatomical Labeling (ANIMAL) (Collins and Evans,
1997; Collins et al., 1995) algorithm, uses a multi-resolution, multi-
scale methodology, and has been used in many studies to analyze mor-
phometric variability (Chen et al., 2006; Dorr et al., 2008; Kovačević
et al., 2005; Lerch et al., 2008; Mercer et al., 2009).

Volumetric data from extracted deformation fields

The volume of ROIs was determined by analysis of the extracted de-
formation fields. To reduce random noise and assure normality under
the central limit theorem, the extracted deformation fields were blurred
prior to analysis, and the logarithm of the Jacobian determinant was
computed. Volumeswere thendetermined by integrating over all voxels
of the Jacobian determinant belonging to the ROI (brain structure or the
octahedron comprising the focal area of change). To extract structure
volumes a Gaussian filter with a full width at half maximum (fwhm)
of 100 μm was used, and a fwhm of 200 μm was used for focal areas of
atrophy. Overall brain size differences were accounted for by removing
the linear component of the extracted deformation fields.

Measures on brain structures

The compactness of a brain structure was defined as (surface area)1.5/
(volume). This shape measure has a minimum value of about 10.6
for spheres (see Fig. 4 for a visual comparison of the relationship
between the size and the compactness for some brain structures).
Two texture measures were examined: (1) the variance in image
intensities and (2) the standard deviation of the image intensities
within a brain structure. The investigated measures of boundary
contrast were (1) the average gradient magnitude along the surface;
(2) the percentage of brain structure surface with “high contrast”,
wherein MR images were normalized such that the median image
intensity for all brain voxels was 1000, and high contrast was tested
at two levels (an intensity difference of 300 or 500) and (3) the ratio
of neighboring structures with high contrast versus low contrast.

Analysis on simulated focal atrophy

The experiments that examined the effect of focal atrophy on regis-
tration accuracy simulated a small amount of tissue loss (0.08 mm3).
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In order to examine the effect of this simulated volume loss in isola-
tion, we eliminated the inherent variability present in the data.
To this end, a registration was performed on the input files without
any simulated changes. The Jacobian determinants extracted from
this registration (inherent variability Jacobians) contain the inherent
variability in the data set. Before examining the extracted Jacobian
determinants from the simulation experiments (experiment Jacobians),
the inherent variability Jacobians were subtracted from the experiment
Jacobians.

To test the influence of proximal image features on the registration
accuracy, average image intensities and average image gradient magni-
tudes were considered in all octahedrons with a radius of 3–15 voxels
centered at the area of simulated atrophy.
Fig. 2. The relationship between the size of a brain structure and the p-value at which it
is recovered given (A) 5% and (B) 10% simulated atrophy.
Statistical comparison and multiple comparison correction

The anatomical structures of control and mutant groups with sim-
ulated atrophy or expansion were compared with a two-tailed t-test.
P-values indicated are uncorrected. Linear regression was used to test
for correlations. True and false positive voxels were determined for
14 randomly chosen structures larger than 1 mm3, using a two-tailed
t-test. To control for the number of false positives, we used the False
Discovery Rate (FDR) (Genovese et al., 2002) and Threshold-Free
Cluster Enhancement (TFCE) (Smith and Nichols, 2009). We adopted
a 10% threshold for significance for FDR and p b 0.1 for TFCE.
Simulation experiments and results

The aim of this paper was to determine the sensitivity of image
registration for MR mouse brain images. First we ran simulation ex-
periments of atrophy and expansion over whole anatomical regions.
We wanted to determine in which structures we can detect a change,
and what factors influence how accurate we are at determining
the simulated volumetric difference. We then investigated the ability
of image registration to recover small local amounts of simulated
atrophy.
Fractions of structures with simulated atrophy identified

Atrophy and expansion was simulated in the mouse brain struc-
tures defined in Dorr et al. (2008). After image registration, brain
structure volumes were determined for all mutants and controls.
Then, the volume of the brain structure with the simulated change
in the mutant group was compared to the control group to establish
whether DBM could detect this change.

At 5% simulated atrophy 20 out of 59 structures were recovered
(p b 0.05, uncorrected; see Fig. 2A). One third of the brain structures
defined in our atlas are smaller than 1 mm3 and none of these 21
structures were recovered at p b 0.05. In contrast, 5 out of 13 struc-
tures that ranged in size between 1 and 3 mm3 were recovered. Out
of the remaining larger structures, 15 out of 25 were recovered.
Given the lack of recoverability for structures smaller than 1 mm3,
we concluded that these structures span too few voxels (about 5700,
285 voxels lost at 5% atrophy) in a mouse brain MRI scan at 56 μm to
be consistently recovered at this small amount of simulated atrophy.

After increasing the simulated change to 10% atrophy, 39 out of 59
structures were recovered (p b 0.05, uncorrected; see Fig. 2B). In this
case 7 out of 21 structures smaller than 1 mm3 were recovered, 8 out
of 13 at 1–3 mm3, and 24 out of 25 of the remaining structures. Finally
at 20% simulated atrophy, 55 out of 59 structures were recovered
(p b 0.05, uncorrected; not shown). Here, 17 out of the 21 structures
smaller than 1 mm3 were recovered as well as all the other remaining
structures.
Accuracy in recovered atrophy

First we tested what proportion of the simulated atrophy we could
recover. For this test we excluded structures smaller than 1 mm3 due
to their poor general recoverability (see Fractions of structures with
simulated atrophy identified section). There was a trend towards a
positive correlation between structure size and the recovered atrophy
(p = 0.089, adjusted R2 = 0.053, see Fig. 3A). Compactness showed
a negative correlation with the recovered atrophy in a structure
(p = 0.0023, adjusted R2 = 0.21, see Fig. 3B). Because the amount
of simulated atrophy (5%) was small, we examined the effect that
pre-existing differences within our data had on the results. To this
end we calculated the inherent variability that existed between the
structures in the control group and the mutant group without any
simulated adjustment. We found a significant positive correlation
between the amount of inherent variability in a structure and the re-
covered atrophy (p = 3e-08, adjusted R2 = 0.57, see Fig. 3C). After
increasing the simulated atrophy to 10% and 20% in the same struc-
tures, the effect of this inherent variability on the recovered atrophy
dropped by ~80%. Conversely the effect of the size and the compact-
ness of structures on the recovered atrophy increased by 100% and
75% respectively (see Fig. 3D). We further investigated two texture
measures: the variance in image intensity and the standard deviation
of image intensities within brain structures. Neither of these texture
measures showed any relationship with the accuracy of the recovered
atrophy. Finally, we examined the influence that the degree of con-
trast along the boundary of anatomical structures had on the accuracy
in recovered atrophy. In particular, the average gradient magnitude
along the surface was tested, the ratio of neighboring structures
with high contrast versus low contrast as well as the percentage of
structure surface with high contrast. Our MR images were normalized
to have a median image intensity for all brain voxels of 1000. High
contrast was tested at two levels: having an intensity difference of
300 and 500. These measures of boundary contrast did not show
any correlations with the accuracy of recovered atrophy.

In the experiments where 5% atrophy was simulated we found
that with the exception of a single structure the measured atrophy
always underestimated the simulated atrophy. The exception was
the globus pallidus for which the recovered atrophy was 5.3%, and
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Fig. 3. What drives the accuracy of the recovered atrophy when 5% atrophy is simulated in structures at least 1 mm3 in size. (A) There was a trend towards a positive correlation
between the size of a structure and the recovered atrophy (p = 0.089). (B) The compactness of a structure had a negative correlation with the recovered atrophy (p b 0.01),
and (C) a significant positive correlation was found at 5% simulated atrophy with the structural differences that exist without any simulated adjustment (represented as inherent
variability where negative values indicate structures that were inherently larger in the mutant group compared to the controls in the data set) (p b 0.001). (D) The effect of the
inherent variability decreased as the amount of simulated atrophy increased, whereas the effect of the size and compactness on the recovered atrophy increased. CC = corpus
callosum, DG = dentate gyrus of the hippocampus, NAcc = nucleus accumbens.
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the mutant group was 0.8% smaller than the controls due to the inher-
ent variability in this structure. To save computation time, we then
simulated both atrophy and expansion at 5% and 10% in 14 randomly
selected regions. Regardless of the direction of change, the recovered
changes consistently underestimated the simulated changes (see Fig. 5).

All the simulation experiments described above were performed
using ANTs. To ensure that our results generalize across registration
algorithms we repeated all the experiments at 5% simulated atrophy
using ANIMAL and found the same patterns. There was a positive corre-
lation between structure size and the recovered atrophy (p = 0.044,
adjusted R2 = 0.083), a negative correlation between compactness
Fig. 4. The difference between the size of a structure and its compactness. The nucleus accum
shape of the former is a lot more compact. Due to its non-compact shape, the corpus callosu
and the recovered atrophy (p = 0.00017, adjusted R2 = 0.31), and a
positive correlation between the amount of inherent variability and
the recovered atrophy (p = 4.7e-08, adjusted R2 = 0.56) (see Fig. 6).

True positives and false positives

In 14 randomly chosen structures with a size of at least 1 mm3 we
simulated three levels of atrophy (5, 10 and 20%) and performed a
voxel based analysis. The Jacobian determinants were blurred using
a Gaussian filter with a fwhm of 200 μm. We then examined the
amount of true positives and false positive voxels that we obtained
bens and the dentate gyrus of the hippocampus have about the same volume, but the
m looks like a bigger structure than the striatum, but in volume it is about 35% smaller.
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after correcting for multiple comparisons. At 20% simulated structural
atrophy, the number of true positive voxels that we recovered on
average was about 40% using TFCE and about 36% using FDR
(see Fig. 7A). While in some of the smaller structures (cerebellar
peduncle, dentate gyrus and fimbria, all smaller than 4 mm3) we
obtained very few true positives, about 80% of the thalamus (17 mm3)
was recovered. The true positives dwarf the number of false positives
which, on average, was about 0.15% for the TFCE correction and 0.20%
for the FDR correction (see Fig. 7B). Some of the voxels classified as
false positives were located just outside the boundary of the structure
under investigation (see Fig. 7C and D). After accounting for a minor
spillover into adjacent structures by excluding a radius of 3 voxels
around the structure of interest when determining the number of
false positives, TFCE produced 0.03% false positives on average, and
FDR 0.11%. This indicates that the overwhelming majority of the voxel
based analysis produces true positives.

We then simulated 10% atrophy in these structures, and obtained
on average 2.5% true positive voxels with TFCE and 1.1% true positives
with FDR. The false positives at this level were 0.006% and 0.007% for
TFCE and FDR respectively. We were able to detect 5% atrophy at a
structure level using a matched filter (North, 1963), i.e. the structure
definition itself. At a voxel based analysis using a 200-micron Gaussian
filter however, no true or false positives voxelswere recovered in any of
the tested structures at 5% simulated atrophy.

Influence of image features on recovering simulated focal atrophy

To examine the influence of image features on the accuracy of
image registration we ran simulation experiments with a small focal
amount of atrophy at each voxel location within a region of interest.
This change was identical in shape and size for each of the simulation
experiments and consisted of a 90% volume decrease in a discrete oc-
tahedron with a radius of 3.5 voxels (63 voxels in total) translating
into a 0.08 mm3 volume loss. For computational efficiency, we simu-
lated the atrophy in one half of a brain slice at 112-micron isotropic
resolution, yielding 4040 registrations (see Fig. 8). As described in
Accuracy in recovered atrophy section, the inherent variability in
the data has a strong positive correlation on the accuracy of the
recovered change obtained by image registration. To examine the
effect of this small amount of simulated volume change in isolation,
we eliminated the inherent variability in the data. Briefly, a registra-
tion was run on the data without any simulated changes. The Jacobian
determinants from this registration encode the inherent variability in
the data set. Prior to examining the extracted Jacobian determinants
from the simulation experiments, the Jacobians that encode this
inherent variability were subtracted.

We examined how image intensities and image gradient magni-
tudes influence the accuracy of the recovered atrophy as well as the
Fig. 5. Consistent underestimation of the recovered change versus the simulated change.
t-statistic at which it was recovered. The average image intensities
and the t-statistic at which the simulated atrophy was recovered
showed a positive correlation (adjusted R2 = 0.2915 at a radius of
13 voxels, see Fig. 8B). The average gradient magnitudes also showed
a positive correlation with the t-statistics (adjusted R2 = 0.2466 at a
radius of 15 voxels, see Fig. 8C). Average intensity and average gradi-
ent magnitude accounted for 46% of the variance in the t-statistics
(adjusted R2 = 0.4595). We further found positive correlations be-
tween the image intensities and the accuracy in recovered atrophy
(adjusted R2 = 0.1617 at a radius of 3 voxels, see Fig. 8E) and a pos-
itive correlation between the image gradients and the accuracy in
recovered atrophy (adjusted R2 = 0.2948 at a radius of 13 voxels,
see Fig. 8F). Here, average intensity and average gradient magnitude
accounted for 34% of the variance (adjusted R2 = 0.3425).

Discussion

In this study we investigated the effect that nonlinear registration
algorithms have on extracting volumetric group differences from MRI
mouse brain images and how these effects might vary across the
brain. We simulated atrophy and expansion in whole anatomical brain
regions as well as in small local areas and examined the ability of two
registration algorithms to recover the simulated group differences.

First we evaluated how reliably image registration can recover
simulated atrophy in mouse brain structures using the atlas from
Dorr et al. (2008). We found that when 5% atrophy was simulated,
image registration reliably recovered this change in structures that
are 1 mm3 or larger in size. We expect however, that in general it is
not the structure size that determines this threshold, but that it is a
combination of the imaging resolution and the number of voxels
that is lost or gained with a simulated change. Indeed we found that
at 10% simulated atrophy, where the loss in voxels doubles, we
could recover one third of the structures that are smaller than 1 mm3.

Next we looked at how accurately we could determine the amount
of simulated atrophy in the brain structures. The structure size
showed a trend towards a positive correlation with the accuracy in
recovered atrophy. Simulated atrophy tended to be recovered more
accurately in larger structures. This positive correlation was weak at
small amounts of change, and only became significant as the amount
of change was large. We assume that this trend ties in with the in-
creasing number of voxels that was lost in larger structures. Our
results showed that 21–37% of the variance in accuracy could be
explained by the compactness of brain structures. This shape measure
showed a significant negative correlation on the recovered atrophy
regardless of the how much atrophy was simulated. A simulated
change in more spherical (compact) shapes was recovered more ac-
curately than in elongated or sheet like (non-compact) structures.
This might be due to the difference in boundary movement resulting
from an equal volume change in compact and non-compact shapes.
The boundaries of compact shapes have a larger displacement than
those in more elongated shapes at a similar change in volume. This
larger displacement should be easier to detect, and thus the accuracy
in the recovered change should be increased as well.

Registration algorithms operate on the image intensities and gra-
dients. We expected to find a correlation between sensitivity in re-
covery and the strength of the gradients on the boundaries of brain
structures. We tested this but found no relationship. This is likely
due to an inherent need for a visible boundary in order to be able to
define and include a structure in a segmented atlas. When we looked
at local changes, we did find a correlation between gradient magni-
tudes and registration sensitivity.

Brain structure volumes among inbred mice of the same strain
vary in size on the order of 2–15% (Chen et al., 2006). These inherent
structure size differences in our data ranged up to 2.5%. We evaluated
what the impact of this natural inter-individual variability in struc-
ture size was on the accuracy of the recovered atrophy. When only
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Fig. 6. The same correlation patterns were found using both the Advanced Normalization Tools (ANTs) (results in the left column; same as in Fig. 3) and the Automatic Nonlinear
Image Matching and Anatomical Labeling (ANIMAL) algorithm (results in the right column).
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5% atrophywas simulated, inherent variability showed a strong positive
correlationwith the accuracy in recovered atrophy and accounted for as
much as 57% of the variance. However, as the amount of simulated atro-
phy increased and thus the inherent inter-individual variability was
reduced to a smaller portion of the simulated change, the strength
and impact of this positive correlation decreased.

We also found that, in general, the recovered amount of atrophy/
expansion underestimated the amount simulated in the data. There
were two exceptions, and in both cases the overestimation is likely
due to the inherent variability that exists in the data (the globus
pallidus: 5% atrophy simulated, 5.3% atrophy recovered, 0.8% inherent
variability and the superior colliculus: 5% expansion simulated, 5.5%
expansion recovered, 1.4% inherent variability). On average, 61 ±
21% of the simulated changes was recovered. In Pieperhoff et al.
(2008), a processing pipeline is presented based on DBM to analyze
the progression of neurodegenerative disease in humans. To validate
their methods, atrophy is simulated in 6 areas of the brain and expan-
sion was simulated in the lateral ventricles. They report a mean rec-
ognition rate (recovered atrophy/simulated atrophy) of 64 ± 13%,
which agrees well with the underestimation we found. Image regis-
tration algorithms use regularization on for example the similarity
metrics or the produced deformation fields in order to preserve
topology in the resulting vector fields and avoid self-intersecting
deformations. We hypothesize that it is these regularizations that
result in the consistent underestimation of the volume changes we
simulated.

Next we investigated whether our results applied to image regis-
tration procedures used to extract groupwise differences in general.
Several studies have shown that the smoothness of Jacobian determi-
nants varies for different registration algorithms (Han et al., 2012;
Yanovsky et al., 2009). These differences stem from the fact that
registration methods use different transformation models and regu-
larization techniques. To ensure that our findings are not biased
towards a single registration algorithm, we ran all our experiments
at 5% simulated atrophy using two fundamentally different registra-
tion algorithms. ANTs which use a symmetric diffeomorphic trans-
formation model with cross correlation and ANIMAL, which uses
a multi-resolution, multi-scale methodology to produce a global
nonlinear transformation based on local translations. We recovered
the same correlations with both algorithms, suggesting that our find-
ings are not limited to one registration approach.

In addition to assessing the accuracy in recovery of entire struc-
tures, we assessed the number of true positive and false positive
voxels recovered using a voxelwise analysis. A t-test was performed
at each voxel in the brain, and to control for the number of false
positives, FDR (Genovese et al., 2002) and TFCE (Smith and Nichols,
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Fig. 7. True and false positives obtained through a voxel based analysis. (A) The percentage of true positive voxels and (B) false positive voxels captured in 14 structures using
multiple comparison correction methods TFCE and FDR. The structures were reduced in size either by 20% or 10%. Note the different scales of the y-axes. (C) An axial slice through
the mouse brain with a close-up of the cerebellum area with the corresponding f-statistics map for significant voxels at 10% FDR. The arbor vita of the cerebellum (outlined in black)
was reduced in size by 20%. (D) Similarly for the analysis of the cortex of the cerebellum reduced in size by 20%.
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2009) were used. At 20% simulated atrophy, the average amount of
true positive voxels was about 38% and the average amount of false
positives was about 0.17%. At smaller amounts of simulated atrophy,
very few voxels reached statistical significance after correcting for
multiple comparisons. In this experiment atrophy was simulated
over an entire anatomical structure. The optimal way to extract a
change in brain structure size from the Jacobian determinants is by
using a matched filter (North, 1963), i.e. the label of a structure.
However, when a voxelwise analysis is performed one generally
does not have a priori knowledge of the size or shape of the signal
to be extracted, and a Gaussian filter is usually used instead. In our
simulations to detect this brain structure change we used a Gaussian
filter with a fwhm of 200 μm, similar to our MRI phenotyping studies
(Ellegood et al., 2011; Lerch et al., 2011b; Wheeler et al., 2013).
Indeed, when we used a matched filter (i.e. integrated the Jacobians
across a structure label as done in Fig. 2), simulated atrophy could
be detected down to 5% in these same brain regions.

Our experiments indicate that when performing a voxelwise
analysis and subsequently correcting for multiple comparisons the
majority of the findings are indeed true positives. However, we should
keep in mind that at 20% simulated atrophy the true positive voxel
rates across structures ranged from 0 to 80%, indicating that false nega-
tives ranged from20 to 100% andwe thus do not recover all the changes
present in the data. In contrast, when instead of a voxelwise analysis,
an analysis using structure labels is performed at 20% atrophy all
changes are recovered (data not shown).
Lastly, we investigated the impact of image features on the per-
formance of image registration. We simulated a small local amount
of atrophy in one half of a brain slice and found that image intensities
and gradientmagnitudes show positive correlationswith the recovered
t-statistic (accounting for 46% of the variance). They also showed
positive correlations with the accuracy of the recovered atrophy
(accounting for 34% of the variance). In areas with higher average
image intensities and higher average gradient magnitudes the simu-
lated atrophy was recovered more accurately and with a higher
t-statistic. At first glance, the positive correlations with respect to
the image intensities were surprising. In T2 weighted MR images,
ventricles have high image intensities as well as high gradients
with the surrounding tissue. It is these areas in which the highest
t-statistics were recovered and where the simulated atrophy was
most accurately recovered. When we excluded the ventricles from
the analysis, the adjusted R2 dropped from 0.1617 to 0.0307 (data
not shown). This suggests that the ventricles alone predominantly
contributed to the positive correlation we found between accuracy
in recovered atrophy and image intensities. We think that because
of the presence of high intensities and high gradients in certain
areas, image intensities work as a proxy for certain tissues. The stri-
atum has low intensity values and low gradient magnitudes. In those
areas, the sensitivity of image registration is low. Ventricles show the
opposite pattern.

The experiments described in this paper assessed the ability of
DBM to detect atrophy and expansion using simulated data. In order
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Fig. 8. Results of simulated focal atrophy. (A) A T2-weighted axial slice with t-statistics for each voxel at which focal atrophy was simulated overlaid. (B) There was a positive
correlation (adjusted R2 = 0.2915) between the t-statistic and the average image intensity in a radius of 13 voxels around the center of the simulated atrophy, and (C) a positive
correlation (adjusted R2 = 0.2466) between the t-statistic and the average image gradient magnitude in a radius of 15 voxels. (D) A T2-weighted transversal slice with the recovered
atrophy inmm3 overlaid. The recovered atrophywas adjusted for pre-existing differences in the data. (E) Therewas a positive correlation (adjusted R2 = 0.1617) between the recovered
atrophy and the average image intensity in a radius of 3 voxels, and (F) a positive correlation (adjusted R2 = 0.2948) between the recovered atrophy and the average image gradient
magnitude in a radius of 13 voxels.
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to simulate these changes, topology-preserving deformation fieldswere
created and applied to MR images of mouse brains. The resampling of
the data that is involved when applying these deformations blurs the
images, potentially leading to a reduction in contrast in the areas with
simulated change. In turn, this could lead to an increased amount of
false negatives. In an ideal world, our experiments would have been
performed on data sets with known atrophy/expansion. In the absence
of data with precisely known biological differences, we consider the
simulated data a very reasonable substitute.

In general the differences we encounter in mouse brain studies
are small; in the order of 5–20%. And we find that the hierarchical
model building approach described in the manuscript suits these
problems well with a stable set of parameters and even across regis-
tration algorithms. Both the diffeomorphic mapping strategy, as well
as the strategy based on local affine transformations perform well.
Our results indicate that recovering very subtle atrophy in small
structures is difficult. To increase statistical power when these
changes are expected, increased subject numbers could be used.
When large amounts of inherent variability are expected within the
study population, a longitudinal in-vivo approach could be benefi-
cial. For an examination of the tradeoff between using in-vivo and
ex-vivo experiment setups to recover differences in the brain, we
refer the reader to Lerch et al. (2012).
Conclusion

In this paper we apply a novel method to simulate deformation
fields with known structural tissue atrophy or expansion to simulate
changes inmouse brainMRIs.We then tested how our ability to recover
these changes depended on the amount and location of these perturba-
tions as well as the properties of the affected anatomical structures and
underlying image features. Our findings can be summarized as follows:
(1) We can reliably pick up 5% atrophy in structures that are at least
1 mm3 in size at a 56-micron isotropic resolution (a loss of 285 voxels).
(2) The accuracy with which simulated atrophy of whole mouse
brain structures can be recovered depends on the size (adjusted R2

0.05–0.11) and compactness (adjusted R2 0.21–0.37) of the structure.
Larger structures tended to be recovered more accurately in the pres-
ence of small amounts of simulated change. This relationship was sig-
nificant only at large amounts of change. More compact structures can
be recoveredmore accurately regardless of howmuch change was sim-
ulated. (3) The presence of natural inter-individual variability in the
size of brain structures has a considerable impact (57%) on the accuracy
of recovering small changes (at 5% simulated atrophy). (4) Simulated
atrophy and expansion recovered by spatial normalization underesti-
mates the volume difference simulated in the data. (5) Similar patterns
identified between accuracy in recovered atrophy and shape measures
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and the existence of prior differences using two fundamentally different
nonlinear registration algorithms suggest that these findings apply to
image registration in general. (6) Voxelwise results corrected for multi-
ple comparisons show fairly low rates of true positives. We simulated
20% atrophy in 14 brain structures, and on average about 40% of the
affected voxels were recovered as true positives. In the extreme case
we do not recover any true positive voxels: the cerebellar peduncle
when using TFCE correction (see Fig. 7A). (7) Finally, the presence of
strong image gradient magnitudes increases the accuracy of image
registration at a voxel level. In T2 weighted images, so do the image in-
tensities, but we think that here they act as a proxy for areas with high
contrast (ventricles). Ongoing development of registration algorithms
will improve their ability to capture small changes accurately. On the
statistical side of the analysis, new methods could be developed that
account for the varying sensitivity across the brain.

The code we used to generate the simulated deformation fields as
well as a link to the documentation for the code can be found on GitHub
(https://github.com/mcvaneede/generate_deformation_fields).
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