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Abstract—Groupwise registration of a set of shapes represented by unlabeled point sets is a challenging problem since, usually, this

involves solving for point correspondence in a nonrigid motion setting. In this paper, we propose a novel and robust algorithm that is

capable of simultaneously computing the mean shape, represented by a probability density function, from multiple unlabeled point sets

(represented by finite-mixture models), and registering them nonrigidly to this emerging mean shape. This algorithm avoids the

correspondence problem by minimizing the Jensen-Shannon (JS) divergence between the point sets represented as finite mixtures of

Gaussian densities. We motivate the use of the JS divergence by pointing out its close relationship to hypothesis testing. Essentially,

minimizing the JS divergence is asymptotically equivalent to maximizing the likelihood ratio formed from a probability density of the

pooled point sets and the product of the probability densities of the individual point sets. We derive the analytic gradient of the cost

function, namely, the JS-divergence, in order to efficiently achieve the optimal solution. The cost function is fully symmetric, with no

bias toward any of the given shapes to be registered and whose mean is being sought. A by-product of the registration process is a

probabilistic atlas, which is defined as the convex combination of the probability densities of the input point sets being aligned. Our

algorithm can be especially useful for creating atlases of various shapes present in images and for simultaneously (rigidly or nonrigidly)

registering 3D range data sets (in vision and graphics applications), without having to establish any correspondence. We present

experimental results on nonrigidly registering 2D and 3D real and synthetic data (point sets).

Index Terms—Groupwise point set registration, finite-mixture model, Jensen-Shannon divergence, hypothesis testing, thin-plate

spline.

Ç

1 INTRODUCTION

IN recent years, there has been considerable interest in the
application of statistical shape analysis to problems in

medical image analysis and computer vision. Regardless of
whether shapes are parameterized by points, lines, curves
etc., the fundamental problem of estimating the mean and
covariance of shapes remains. We are particularly interested
in the unlabeled point set representation since the statistical
analysis of point set representation of shapes is very mature
[1]. Means, covariances, and probability distributions on
manifolds constructed from point sets can now be defined
and estimated [1].

The primary technical challenge in using point set
representations of shapes is the correspondence problem.
Typically, correspondences can be estimated once the point
sets are properly aligned with appropriate spatial transfor-
mations. If the objects under consideration are deformable,
the adequate transformation would obviously be a nonrigid
spatial mapping. Solving for nonrigid deformations between

point sets with unknown correspondence is a hard problem.
In fact, many current methods only attempt to solve for affine
alignment [2]. Furthermore, we also encounter the issue of the
bias problem in registering two or more data which is a
significant issue in the Atlas construction problem. Atlas
construction here entails the creation of a representative of a
population of point data sets, each of which represents a 3D/
2D shape. Before creating such a representative, one needs to
register the data sets. Since we have more than two sample
point sets to be aligned for creating an atlas, a question that
arises is: How do we align all of the point sets in a symmetric
manner so that there is no bias toward any particular point
set? Once the registration is achieved, the representative atlas
is generally taken to be some sort of average of the aligned
point sets.

To overcome the aforementioned problems, we present a
novel approach to simultaneously register multiple point
sets and construct the atlas. The idea is to model each point
set by a probability density function and then quantify the
distance between these probability densities by using an
information-theoretic measure. The distance is optimized
over a space of coordinate transformations, yielding the
desired registrations. It is obvious that, once all of the
density functions are transformed through appropriate
changes in their parameters, the distance measure between
these densities would be minimized since all of these
densities should be similar to each other. We impose
regularization on each deformation field to prevent large
transformations on each density representing the point sets.
The Jensen-Shannon divergence, first introduced in [3],
serves as a model divergence measure between multiple
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probability densities and researchers have used it as a
dissimilarity measure for image registration and retrieval
applications in the past (see [4], [5], [6]), but never for the
registration of two or more point sets. It has some very
desirable properties. To name a few, 1) the square root of
the JS divergence (in the case when its (convex combination)
parameter is fixed to 1

2 ) is a metric [7], 2) the JS divergence
relates to other information-theoretic functionals such as the
relative entropy or the Kullback-Leibler (KL) divergence
and, hence, it shares their mathematical properties and their
intuitive interpretability, and 3) the compared densities can
be weighted, which allows us to take into account the
different sizes of the point samples from which the
probability densities are computed. Some of these advan-
tages will be explicitly brought to light in subsequent
sections during the course of description of our method.

The rest of this paper is organized as follows: The
remainder of Section 1 gives a brief review of the literature,
focusing on the differences between existing methods and
ours. Section 2 contains a description of the formulation
using the JS divergence for our simultaneous nonrigid
registration and atlas construction model and also a
derivation of the associated gradient of the energy function.
Section 3 contains a description of the computational
techniques employed in our algorithm for simultaneous
nonrigid registration and atlas construction. Experimental
results on 2D and 3D point sets are presented in Section 4.
Finally, we draw conclusions in Section 5.

1.1 Previous Work

Extensive studies on the atlas construction for deformable
shapes can be found in the literature, covering both
theoretical and practical issues relating to computer vision
and pattern recognition. Based on the shape representation
used, they can be classified into two distinct categories. One
is the methods dealing with shapes represented by feature
point sets and everything else is in the other category,
including those shapes represented as curves and surfaces
of the shape boundary, and these curves and surfaces may
be either intrinsically or extrinsically parameterized (for
example, using point locations and spline coefficients).

The work presented in [8] is a representative method using
an intrinsic curve parameterization to analyze deformable
shapes. Shapes are represented as elements of infinite-
dimensional spaces and their pairwise differences are
quantified using the lengths of geodesics connecting them
on these spaces. The intrinsic mean (the Karcher mean) can be
computed as a point on the manifold (of shapes) that
minimizes the sum of squared geodesic distances between
this unknown point to each individual shape which lies on the
manifold. However, the curves are limited to being closed
curves and this method has not been extended to the 3D
surface shapes. For methods using intrinsic curve or surface
representations [8], [9], [10], further statistical analysis on
them is much more difficult than analysis on the point
representation, but the reward may be higher due to the use of
the intrinsic higher order representation.

Among the methods using point set parameterization, the
idea of using nonrigid spatial mapping functions, specifically
thin-plate splines (TPSs) [11], [12], [13], to analyze deformable
shape has been widely adopted. Bookstein [11] successfully

initiated the research efforts on the usage of TPSs to model
the deformation of shapes. This method is landmark-based:
It avoids the correspondence problem since the placement
of corresponding points is driven by the visual perception
of experts. However, it suffers from the typical problem
besetting landmark methods, e.g., inconsistency. Several
significant articles on robust and nonrigid point set
matching have been published by Rangarajan et al., using
TPSs [12], [14], [15]. In their recent work [12], they extend
their work to the construction of a mean shape from a set of
unlabeled shapes, which are represented by unlabeled point
sets. The main strength of their work is the ability to jointly
determine the correspondences and nonrigid transforma-
tion between each point set to the emerging mean shape
using deterministic annealing (DA) and soft assign, and the
generated mean shape is entirely symmetric, with no bias
toward any of the original shapes. Garcin and Younes [16]
attempt solving the unlabeled point set averaging problem
by using a similar idea as in [12], except that it is under the
diffeomorphism setting and, consequently, the estimated
distances between point sets are geodesic distances. How-
ever, in both works, the annealing procedure results in a
slow algorithm. Unlike their approaches, we do not need to
first solve a correspondence problem in order to subse-
quently solve a nonrigid registration problem.

The active shape model proposed in [17] utilized points
to represent deformable shapes. This work pioneered the
efforts to build point distribution models to understand
deformable shapes [17], [18]. Objects are represented as
carefully defined landmark points and the variation of
shapes is modeled using the principal component analysis.
These landmark points are acquired through a more or less
manual landmarking process, where an expert goes
through all of the samples to mark corresponding points
on each sample. It is a rather tedious process and accuracy
is limited. In recent work [19], an attempt is made to
overcome this limitation by trying to automatically solve for
the correspondences in a nonrigid setting. The resulting
algorithm is very similar to earlier work in [10] and is
restricted to curves. The work in [2] also uses 2D points to
learn shape statistics, which is quite similar to the active
shape model method except that more attention has been
paid to the sample point set generation process from the
shape. Unlike our method, the transformation between
curves is limited to rigid mapping and the registration
process is not symmetric.

There are several articles on point set alignment in recent
literature which bear a close relation to our research reported
here. For instance, Tsin and Kanade [20] proposed a kernel
correlation-based point set registration approach, where the
cost function is proportional to the correlation of two kernel
density estimates. In [21], Jian and Vemuri introduced a novel
and robust algorithm for rigidly and nonrigidly registering
pairs of data sets using the L2 distance between mixtures of
Gaussians representing the point set data. They derived a
closed-form expression for the L2 distance between the
mixtures of Gaussians and used it in their registration
algorithm. Therefore, their algorithm is very fast in compar-
ison to existing methods on point set registration and the
results shown are quantitatively satisfactory. However, they
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do not actually fit a mixture density to each point set,

choosing instead to allow each point in each set to be a

cluster center. Consequently, their method is actually

more similar to the image matching method in [22], as

discussed in the following, but with the advantage of not

having to evaluate the cost function involving spatial

integrals numerically since a closed-form expression is

derived for the same. Their method, however, has not been

extended to the problem of unbiased matching of multiple

point sets being addressed in this paper. Perhaps, the

approach of Wang et al. [23] is closest to our work, where a

relative entropy measure (the KL distance) is used to find a

similarity transformation between two point sets. The KL

distance, as we know, is a special case of our proposed JS

divergence for two random variables [3] and the approach

in [23] only tackles the pairwise rigid matching problem.

These methods are similar to our work since we also model

each of the point sets by a kernel density function and then

quantify the (dis)similarity between them by using an

information-theoretic measure, followed by an optimization

of a (dis)similarity function over a space of coordinate

transformations, yielding the desired transformation. The

difference lies in the fact that the JS divergence used in our

work is a lot more general than the information-theoretic

measures used in [20], [21], [23] and it can easily cope with

multiple point sets. Recently, in [22], Glaunes et al. have

represented points as delta functions and matched them

using the dual norm in a reproducing kernel Hilbert space.

The main problem with this technique is that it needs a

3D spatial integral, which must be numerically computed.

In contrast, we compute the JS divergence by using an

empirical framework, where the computations converge in

the limit to the true values. We will show that our method,

when applied to match point sets, achieves very good

performance in terms of both robustness and accuracy.

2 MATHEMATICAL FORMULATION

In this section, we present the mathematical formulation of

our simultaneous nonrigid registration and atlas construc-

tion method. Note that, normally, nonrigid registration

precedes atlas construction since the latter requires the data

to be registered. However, in our work, the atlas emerges as

a by-product of the nonrigid registration and hence is not

achieved in the aforementioned traditional sequential order.

The basic idea is to model each point set by a probability

density function and then quantify the distance between

these probability densities by using an information-theore-

tic measure. Fig. 1 illustrates this idea, wherein the right

column depicts the density functions corresponding to the

point sets drawn from a cortical substructure in the human

brain called the corpus callosum, which is shown in the left

column. The dissimilarity measure between these density

functions is then optimized over a space of coordinate

transformations yielding the desired transformations. We

will begin by presenting the finite mixture of Gaussian

densities used to model the probability densities of the

given point sets.

2.1 The Finite-Mixture Models

Given the fact that nonrigid point matching is fraught with
the problems of noise, outliers, and deformations with
unknown parameterizations, it is natural to use probability
distributions to model each point set. We also think that it is
natural to use a finite Gaussian mixture model as the
representation of a point set. As the most frequently used
mixture model, a Gaussian mixture [24] is defined as a
convex combination of Gaussian component densities.

We use the following notation: The data point sets are
denoted by fXc; c 2 f1; . . . ; Ngg. Each point set Xc consists
of points fxci 2 IRd; i 2 f1; . . . ; ncgg. To model each point set
as a Gaussian mixture, we define a set of cluster centers, one
for each point set, to serve as the Gaussian mixture centers.
Since the feature point sets are usually highly structured,
we can expect them to cluster well. Furthermore, we can
greatly improve the algorithm efficiency by using a limited
number of clusters. Note that we can choose the cluster
centers to be the point set itself if the size of point sets is
quite small. The cluster center point sets are denoted by
fV c; c 2 f1; . . . ; Ngg. Each cluster point set V c consists of
points fvca 2 IRd; a 2 f1; . . . ; Kcgg. Note that there are
Kc points in each V c and the number of clusters for each
point set may be different (in our implementation, the
number of clusters is usually chosen to be proportional to
the size of the point sets). The cluster centers are estimated
by using a clustering process over the original sample
points xci and we only need to do this once before the
process of joint atlas estimation and point set registration.
The atlas point set is denoted by Z. We begin by specifying
the density function of each point set:

PcðxÞ ¼
XKc

a¼1

�capðxjvcaÞ: ð1Þ

In (1), the occupancy probability, which is different for each
data point set, is denoted by �c. The component density
pðxjvcaÞ is
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pðxjvcaÞ ¼Gðx� vca;�aÞ

¼ 1

ð2�Þ
D
2 j�aj

1
2

exp � 1

2
x� vca
� �T

��1
a x� vca
� �� �

;
ð2Þ

where Gðx� vpa;�aÞ is the Gaussian kernel in
d-dimensional space and j � j denotes the determinant. The
probability of the point set Xc coming from this mixture is
then

PrðXcjV c; �cÞ ¼
Ync
i¼1

PpðxciÞ ¼
Ync
i¼1

XKc

a¼1

�capðxci jvcaÞ: ð3Þ

Later, we will set the occupancy probability to be uniform
and make the covariance matrices �a proportional to the
identity matrix in order to simplify the atlas estimation
procedure.

Having specified the Gaussian mixtures of each point set,
we would like to compute a meaningful average/mean
(shape) point set Z, given all of the sample sets and their
associated distributions. Intuitively, if these point sets are
aligned correctly under appropriate nonrigid deformations,
the resulting mixtures should be statistically similar to each
other. Consequently, this raises the key question: How can
we measure the similarity/closeness between these densi-
ties represented by Gaussian mixtures? We answer this in
the following section.

2.2 The Jensen-Shannon Divergence for Learning
the Atlas

The JS divergence, first introduced in [3], serves as a
measure of cohesion between multiple probability densities.
It has been used by some researchers as a dissimilarity
measure for image registration and retrieval applications
[4], [5]. This dissimilarity measure has some very desirable
properties:

1. The square root of the JS divergence (in the case
when its parameter is fixed to 1

2 ) is a metric [7].
2. The JS divergence relates to other information-

theoretic functionals, such as the relative entropy
or the KL divergence, and, hence, it shares their
mathematical properties and their intuitive appeal.

3. The probability densities compared using the
JS divergence can be weighted, which allows one
to take into account the different sizes of the point
set samples from which the probability densities are
computed.

4. The JS divergence measure also allows us to have
different numbers of cluster centers in each point set.

There is NO requirement that the cluster centers be in
correspondence, as required by Chui et al. [12]. Given n
probability distributions Pi, i 2 f1; . . . ; ng, the JS divergence
of Pi is defined by

JS�ðP1;P2; . . . ;PnÞ ¼ Hð
X

�iPiÞ �
X

�iHðPiÞ; ð4Þ

where � ¼ f�1; �2; . . . ; �nj�i > 0;
P
�i ¼ 1g are the weights

of the probability distributions Pi and HðPiÞ is the Shannon
entropy. The two terms on the right-hand side of (4) are the
entropy of P :¼

P
�iPi (the �-convex combination of the

Pis) and the same convex combination of the respective
entropies.

Assume that each point set Xc is related to Z via a
function fc and ��c is the set of the transformation
parameters associated with each function fc. The
densities of the deformed point sets can be written as
Pc ¼ PcðxjV c; ��cÞ ¼

PKc

a¼1 �
c
apðxjfcðvcaÞÞ. To compute the

mean shape density, that is, the probabilistic atlas, from
these point sets and register them to the emerging mean
shape density, we need to recover the transformation
parameters ��c. This problem can be modeled as an
optimization problem, with the objective function being
the JS divergence between the densities of the deformed
point sets, represented as Pc ¼ PcðxjV c; ��cÞ. The probabil-
istic atlas construction problem can now be formulated as

min
��c

JS�ðP1;P2; . . . ;PNÞ þ �
XN
c¼1

kLfck2

¼ min
��c

Hð
X
c

�cPcÞ �
X
c

�cHðPcÞ þ �
XN
c¼1

kLfck2:

ð5Þ

In (5), the weight parameter � is a positive constant and the
operator L determines the kind of regularization imposed.
For example, L could correspond to a thin-plate spline, a
Gaussian radial basis function, etc. Each choice of L is, in
turn, related to a kernel and a metric of the deformation
from and to Z.

Following the approach in [14] and [21], we choose the
thin-plate spline (TPS) to represent the nonrigid deformation.
Given n control points x1; . . . ;xn in IRd, the TPS mapping
f : IRd ! IRd has the form fðxÞ ¼ tþAxþWUðxÞ. Here,
tþAx is the linear part of TPS, whereas WUðxÞ is the
nonlinear part, which is determined by a d� n matrix W,
UðxÞ is an n� 1 vector consisting of n basis functions
UiðxÞ ¼ Uðx;xiÞ, where UðrÞ is the kernel function of TPS.
For example, if the dimension is 2 ðd ¼ 2Þ, we have
UðrÞ ¼ 1=ð8�Þr2lnðrÞ. Therefore, the regularization term in
(5) is governed by the bending energy of the TPS warping
and can be explicitly expressed as traceðWKWT Þ, where
K ¼ ðKijÞ and Kij ¼ Uðxi;xjÞ. In our experiments, the
clusters are used as control points. Other schemes for
choosing control points may also be considered. Note the
linear part of the TPS can be obtained by an initial affine
registration, then numerical optimization techniques can be
applied to find the nonrigid parameter W.

Next, we will present some properties of the JS
divergence in the context of groupwise point sets registra-
tion.

2.3 Jensen-Shannon Divergence in a Hypothesis
Testing Framework

In this section, we show that the JS divergence can be
interpreted in the statistical framework of hypothesis
testing. We first give an intuitive presentation, followed
by a more formal one. Assume, for the moment, that we
have only two point sets, Xð1Þ and Xð2Þ, that need to be
registered. We construct the following hypothesis test. For
any given nonrigid transformation, consider two hypoth-
eses for the pooled point set X ¼ Xð1Þ [Xð2Þ. The null
hypothesis is that the samples Xð1Þ and Xð2Þ are indepen-
dent but drawn from two different distributions, that is, P1

and P2, respectively. The alternative hypothesis is that the
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samples X ¼ Xð1Þ [Xð2Þ are independent and drawn from a

pooled distribution P. The likelihood ratio for this hypoth-

esis test is

� ¼
Qn1þn2

k¼1 PðXkÞQn1

ki¼1 P1ðXð1Þk1
Þ
Qn2

k2¼1 P2ðXð2Þk2
Þ
; ð6Þ

wheren1 is the number of instances from point setXð1Þ andn2

is the number of instances fromXð2Þ. It should be understood

that the distribution P is a maximum likelihood estimate over

the n1 þ n2 samples drawn fromX ¼ Xð1Þ [Xð2Þ and that the

distributions P1 and P2 are the maximum likelihood

estimates over the n1 samples drawn from Xð1Þ and the

n2 samples drawn from Xð2Þ, respectively. Furthermore, the

same set of samples is used in the numerator and denomi-

nator of (6), with the main difference being that the identity of

the point setXð1Þ orXð2Þ is erased when considering samples

from the pooled point setX ¼ Xð1Þ [Xð2Þ. We then maximize

the likelihood ratio � over the set of nonrigid transformations.

Maximizing the likelihood ratio corresponds to favoring the

likelihood of a single pooled distribution P over the product

of the likelihoods of separate distributions P1 and P2

evaluated at the same set of samples.

It can be shown that the likelihood ratio asymptotically

converges to the JS divergence when the distribution P

above is modeled as a mixture �1P1 þ �2P2, with �1 ¼ n1

n1þn2
,

and �2 ¼ n2

n1þn2
. This approach has the advantage that we do

not need a separate model for the overlay. More formally

(and moving over to the case of multiple point sets), we

construct a likelihood ratio between independent and

identically distributed (i.i.d.) samples drawn from a mixture

ð
P

c �cPcÞ, with �c ¼ ncP
b
nb

, and i.i.d. samples drawn from a

heterogeneous collection of densities ðP1;P2; . . . ;PNÞ, with

the samples being indexed by the specific member densities

in the family from which they are drawn. Assume that n1

samples are drawn from P1, n2 from P2, etc. Let the total

number of pooled samples be defined as M ¼def PN
c¼1 nc. The

likelihood ratio then is

� ¼
QM

k¼1

PN
c¼1 �cPcðxkÞQN

c¼1 �nc
kc¼1PcðxckcÞ

; ð7Þ

where xk consists of points fxckc ; kc 2 f1; . . . ; ncgc 2
f1; . . . ; Ngg, which is the pooled data of all of the samples.

In contrast to the typical statistical test relative to a

threshold, we seek the maximum of the likelihood ratio in

(7). The following theorem shows the relationship between

the JS divergence and the above likelihood ratio.

Theorem 1. Given N probability distributions Pc,

c 2 f1; . . . ; Ng, maximizing the hypothesis ratio in (7) is

equivalent to minimizing the JS divergence between the

N probability distributions Pc, c 2 f1; . . . ; Ng.
Proof. Taking the negative logarithm of the likelihood ratio,

we have

� log �

¼ �
XM
k¼1

log
XN
c¼1

�cPcðxkÞ þ
XN
c¼1

log
Ync
kc¼1

PcðxckcÞ

¼ �
XM
k¼1

log
XN
c¼1

�cPcðxkÞ þ
XN
c¼1

Xnc
kc¼1

log PcðxckcÞ:

ð8Þ

We now apply the law of large numbers after
assuming that the individual point set counts fncg are
large enough. We get

� log � ¼MH
XN
c¼1

�cPc

 !
�
XN
c¼1

ncHðPcÞ

¼M H
XN
c¼1

�cPc

 !
�
XN
c¼1

nc
M
HðPcÞ

" #

¼M½JS�ðP1;P2; . . . ;PNÞ�:

ð9Þ

tu

The interpretation of minimizing the JS divergence as a

type of hypothesis testing has intuitive appeal for us.

Maximizing the likelihood ratio above means that we favor

a maximum likelihood explanation of fitting a mixture to

the pooled data rather than separately fitting mixtures to

the individual point sets. Note that, in our groupwise

registration approach, the warping is not between a source

and a fixed target. Instead, the warping is performed on the

parameters of the original mixtures such that the likelihood

ratio is maximized.

2.4 Jensen-Shannon Divergence Is Unbiased

Typically, we are required to construct an atlas from a very

large number of point sets and this process will usually take

a long time since the computational complexity grows

polynomially with the number of point sets N that we want

to register. We now introduce a hierarchical registration

technique that significantly reduces the computational

complexity.
Assume that we are given N point sets from which we

are required to construct the probabilistic atlas. We divide

the N point sets into m subsets (generally m� N).

Therefore, we can construct m probabilistic atlases from

these subsets by using our algorithms and all of the point

sets inside each of the subsets are registered. Then, we can

either construct a single atlas from these m atlases or further

divide the m atlas point sets into even smaller subsets and

follow the same process until a single atlas is constructed.

The remaining question is whether the atlas constructed

this way is biased or not. The following theorem will help

us give the answer, with the exclusion of the TPS part of the

cost function.

Theorem 2. Given N probability densities Pc, c 2 f1; . . . ; Ng,
each with a weight �a in the JS divergence. Let us divide

this set of N densities into m subsets such that the ith

subset contains ni densities Pc, c 2 fkðiÞ1 ; k
ðiÞ
2 ; . . . ; kðiÞni g, andP

i ni ¼ N . Assuming that Si is the convex combination of

all of the densities, the ith subset, with the weights
�
kðiÞ
�i

,

where �i ¼
P

j �kðiÞj
, that is, Si ¼

Pni
j¼1 �kðiÞj

P
k
ðiÞ
j

=�i. The JS
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divergence of the Pcs and the JS divergence of the Sis are then
related by

JS�ðP1;P2; � � � ;PNÞ � JS�ðS1;S2; � � � ;SmÞ

¼
Xm
i¼1

�iJS�
kðiÞ
�i

P
k
ðiÞ
1

;P
k
ðiÞ
2

; � � � ;P
k
ðiÞ
ni

� �
:

ð10Þ

Proof. We can rewrite JS�ðS1;S2; � � � ;SmÞ as

JS�ðS1;S2; � � � ;SmÞ

¼ H
Xm
i¼1

�iSi

 !
�
Xm
i¼1

�iHðSiÞ

¼ H
Xm
i¼1

�i
Xni
j¼1

�
k
ðiÞ
j

P
k
ðiÞ
j

�i

 !
�
Xm
i¼1

�iHðSiÞ

¼ H
XN
i¼1

�iPi

 !
�
Xm
i¼1

�iHðSiÞ:

Therefore, the left-hand side of (10) can be rewritten as

JS�ðP1;P2; � � � ;PNÞ � JS�ðS1;S2; � � � ;SmÞ

¼
Xm
i¼1

�iHðSiÞ �
XN
i¼1

�iHðPiÞ:

Meanwhile, the right-hand side of (10) can be rewritten
as

Xm
i¼1

�iJS�
kðiÞ
�i

ðP
k
ðiÞ
1

;P
k
ðiÞ
2

; � � � ;P
k
ðiÞ
ni

Þ

¼
Xm
i¼1

�i H
Xni
j¼1

�
k
ðiÞ
j

�i
P
k
ðiÞ
j

 !
�
Xni
j¼1

�
k
ðiÞ
j

�i
H P

k
ðiÞ
j

� �" #

¼
Xm
i¼1

�iHðSiÞ �
Xni
j¼1

�
k
ðiÞ
j

H P
k
ðiÞ
j

� �" #

¼
Xm
i¼1

�iHðSiÞ �
XN
i¼1

�iHðPiÞ;

which is exactly the same as the left-hand side of (10).tu
In our registration algorithm, all of the point sets are

represented as probability densities and the atlas con-

structed can be considered a convex combination of these

densities. Therefore, we can treat Pcs and Sis as the

densities corresponding to the point sets and the

constructed atlases from the subsets, respectively. There-

fore, from Theorem 2, we know that the relationship in

(10) holds between the JS divergence of the Pcs and Sis.

Notice that the right-hand side of (10) is the JS

divergences of the densities in all the subsets, which are

minimized in each step of the hierarchical technique that

we proposed here. Intuitively, if these point sets are

aligned properly, the corresponding density functions

should be statistically similar. Therefore, the JS diver-

gences of all the subsets should be zero or very close to

zero, which means that the right-hand side of (10) is zero.

Consequently, the JS divergence of the Pcs and the JS

divergence of the Sis are equal to each other. Therefore,

minimizing the JS divergence of all of the resulting atlas

point sets is equivalent to minimizing the JS divergence of

the original point sets.
Having introduced the cost function and the transforma-

tion model, now, the task is to design an efficient way of

estimating the empirical JS divergence from the Gaussian

mixtures and derive the analytic gradient of the estimated

divergence in order to achieve the optimal solution

efficiently.

3 ESTIMATING THE EMPIRICAL JENSEN-SHANNON

DIVERGENCE

In (5),

Pi ¼ PiðxjV i; ��iÞ ¼
XKi

a¼1

�iapðxjfiðviaÞÞ

¼ 1

Ki

XKi

a¼1

Gðx� fiðviaÞ;�aÞ ¼
1

Ki

XKi

a¼1

Gðx� fiðviaÞ; �2IÞ;

where we assume that the occupancy probabilities are

uniform ð�ia ¼ 1
Ki
Þ and the covariance matrices �i are

isotropic, diagonal, and identical �a ¼ �2I. For simplicity,

we denote deformed cluster centers as uia :¼ fiðviaÞ. We can

then generate qi random samples s
ðiÞ
1 ; s

ðiÞ
2 ; . . . ; sðiÞqi from the

mixture Pi.Q ¼
P

i qi is the total number of random samples

from all N densities and functions Pi, 8i ¼ f1; 2; . . . ; Ng,
fs1; s2; . . . ; sQg � fsð1Þ1 ; . . . ; s

ðiÞ
j ; . . . ; sðNÞqN

g are the pooled ran-

dom samples. We have the estimation of the Shannon

entropy for Pi by using the weak law of large numbers:

HðPiÞ ¼ �
1

qi

Xqi
j¼1

log PiðsðiÞj Þ

¼ � 1

qi

Xqi
j¼1

log
1

Ki

XKi

a¼1

GðsðiÞj � fiðviaÞ; �2IÞ
" #

¼ � 1

qi

Xqi
j¼1

log
1

Ki

XKi

a¼1

GðsðiÞj � uia; �2IÞ
" #

:

ð11Þ

For the convex combination
P
�iPi, if we choose �i ¼ Ki

M ,

where M ¼
P

i Ki is the total number of the cluster centers

in the N point sets that we want to register, we have the

following:

XN
i¼1

�iPi ¼
XN
i¼1

�i
XKi

a¼1

1

Ki
Gðx� uiaÞ; �2IÞ

¼ 1

M

XN
i¼1

XKi

a¼1

Gðx� uiaÞ; �2IÞ

¼ 1

M

XM
j¼1

Gðx� uj; �2IÞ;

ð12Þ

where fu1; u2; . . . ; uMg � fu1
1; . . . ; uij; . . . ; uNKN

g are the pooled

cluster centers. Therefore, the linear combination of the

GMMs can be expressed as a single Gaussian Mixture

centered at the deformed cluster centers. Consequently, we

have the Shannon entropy estimation of the
P
�iPi:
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H
XN
i¼1

�iPi

 !
¼H 1

M

XM
j¼1

Gðx� uj; �2IÞ
 !

¼ � 1

Q

XQ
j¼1

log
1

M

XM
a¼1

Gðsj � ua; �2IÞ
" #

:

ð13Þ

Combining the two terms in (11) and (13), we have

JS�ðP1;P2; . . . ;PNÞ

¼H
X

�iPi

� �
�
X

�iHðPiÞ

¼ � 1

Q

XQ
j¼1

log
1

M

XM
a¼1

Gðsj � ua; �2IÞ
" #

þ
XN
i¼1

Ki

qiM

Xqi
j¼1

log
1

Ki

XKi

a¼1

GðsðiÞj � uia; �2IÞ
" #

:

ð14Þ

3.1 Cost Function Optimization

The computation of the gradient of the energy function is

necessary in the minimization process when employing a

gradient-based scheme. If this can be done in analytical

form, it leads to an efficient optimization method. We now

present the analytic form of the gradient of the JS

divergence (our cost function):

rJS ¼ @JS

@��1
;
@JS

@��2
; . . . ;

@JS

@��N

� 	
: ð15Þ

Each component of the gradient may be found by differ-

entiating (14) with respect to the transformation parameters.

In order to compute this gradient, let us first calculate the

derivative of GðsðiÞj � uia; �2IÞwith respect to ��i:

@GðsðiÞj � uia; �2IÞ
@��i

¼ 1

�2
GðsðiÞj � uia; �2IÞðsðiÞj � uiaÞ

@uia
@��i

¼ 1

�2
GðsðiÞj � uia; �2IÞðsðiÞj � uiaÞ

@fiðvia; ��iÞ
@��i

:

ð16Þ

Based on this, it is straightforward to derive the gradient

of the JS divergence in (14) with respect to the transforma-

tion parameters ��i, which is given by

@JS

@��i

¼ � 1

Q

XQ
j¼1

1PM
a¼1 Gðsj � ua; �2IÞ

XM
a¼1

@Gðsj � ua; �2IÞ
@��i

þ Ki

qiM

Xqi
j¼1

1PKi

a¼1 Gðs
ðiÞ
j � uia; �2IÞ

XKi

a¼1

@GðsðiÞj � uia; �2IÞ
@��i

¼ � 1

Q

XQ
j¼1

1PM
a¼1 Gðsj � ua; �2IÞ

XKi

a¼1

@Gðsj � uia; �2IÞ
@��i

þ Ki

qiM

Xqi
j¼1

1PKi

a¼1 Gðs
ðiÞ
j � uia; �2IÞ

XKi

a¼1

@GðsðiÞj � uia; �2IÞ
@��i

:

ð17Þ

3.2 Algorithm Summary

Our simultaneous atlas construction and registration algo-

rithm can be summarized as follows:
Given N point sets fXc; c 2 f1; . . . ; Ngg.

1. Estimate the cluster centers fV c; c 2 f1; . . . ; Ngg for
each point Xc. In our implementation, we utilize the
DA procedure, with its proven benefit of robustness
in clustering [25].

2. Set the initial transformation parameters ��c to zero
and optimize the cost function in (5) with respect to
the transformation parameter ��c. Since the analytic
gradients with respect to these transformation
parameters have to be explicitly derived in (17), we
can use them in gradient-based numerical optimiza-
tion techniques like the Quasi-Newton method and
the nonlinear Conjugate-Gradient method to yield a
fast solution. The samples fsijg from the mixture Pi

are redrawn every couple of iterations. We currently
have two implementations of our registration algo-
rithm using the Matlab Optimization toolbox: one
with gradients explicitly computed and one without.
Experiments show that results on data sets with
large nonrigid deformations show that the version
with analytic gradients converges faster than the one
without.

3. The successful registration process ensures that the
deformed point sets are close to each other. There-
fore, we can apply one of the recovered deforma-
tions to the corresponding point sets to recover the
mean shape.

Note that our transformation model can be any type of

geometric transformations, for example, rigid, affine, poly-

nomial, or other type of nonrigid transformations. There-

fore, our algorithm can be applied to registration problems

other than the atlas construction. For example, we can apply

it to align any two point sets in 2D or 3D. In this case, there

is a model point set and a scene point set ðN ¼ 2Þ. The only

modification to the above procedure is to keep the scene

point set fixed and we try recovering the motion from the

model point set to the scene point set such that the JS

divergence between these two distributions is minimized.
For a typical atlas construction problem, an affine

registration of the multiple point sets precedes the nonrigid

registration to bring the point sets relatively closer to each

other, which will speed up the nonrigid registration process

significantly. We will present experimental results on point

set alignment between two given point sets and an atlas

construction from multiple point sets in the next section.

4 EXPERIMENT RESULTS

We now present experimental results on the application of

our algorithm to both synthetic and real data sets. First, to

demonstrate the robustness and accuracy of our algorithm,

we show the alignment results by applying the JS

divergence to the point set matching problem. Then, we

will present the atlas construction results in the second part

of this section.
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4.1 Alignment Results

We first perform a set of exact rigid registration experiments
on noiseless data sets to test the validity of our approach and
the alignment results are shown. in Fig. 2. The top row shows
the registration result for a 2D real range data set of a road
using the data from [20]. The figure depicts the real data and
the registered (using rigid motion). The top left frame
contains two unregistered point sets superimposed on each
other. The top right frame contains the same point sets after
registration using our algorithm. A 3D helix example is
presented in the second row (with the same arrangement as
the top row). We also tested our method against the
KC method [20]; both our method and the KC method
achieve very high accuracy in the noiseless case.

Following a similar experimental design in [21], we used
the following procedure to test how our method behaves in
the presence of noise and outliers. For a model point set
with n points, we first discard a subset of size ð1� �Þn from
the point set and then we apply a synthetic rigid
transformation to the template. Finally, we add ð	 � �Þ�
spurious, uniformly distributed points to the point set,
which have a total of 	n points, of which only �n comes
from the uncorrupted model point set. We compare our
method with the relatively more robust KC method [20]
(compared with ICP) and the comparison is done via a set
of 2D experiments. At each of the outlier strengths, we generate
five models and six corrupted point sets from each model for a
total of 30 pairs at each outlier strength setting. For each pair,
we use our algorithm and the KC method to estimate the
known rigid transformation, which was partially respon-
sible for the corruption. Results show that, when the noise
level is high, our method exhibits stronger resistance to
outliers than the KC method, as shown in Fig. 3.

We also applied our algorithm to nonrigidly register
medical data sets (2D point sets). Fig. 4 depicts some results
of our registration method applied to two 2D corpus
callosum slices, with feature points manually extracted by
human experts. The top left of Fig. 4 contains these two
unregistered point sets superimposed on each other (“o”
and “þ” indicate the model and scene points, respectively);
the registration result is shown in the lower left column of
Fig. 4. The warping of the 2D grid under the recovered
motion is shown in the middle column of Figs. 4. Our

nonrigid alignment performs well in the presence of noise

and outliers (Figs. 4 right column). For the purpose of

comparison, we also tested the TPS-RPM program provided

in [14] on this data set and found that TPS-RPM can

correctly register the pair without outliers (Fig. 4 top left)

but failed to match the corrupted pair (Fig. 4 top right).

4.2 Atlas Construction Results

In this section, we begin with a simple but demonstrative

example of our algorithm for 2D atlas estimation. After this

example, we describe a 3D implementation on real

hippocampal data sets. The structure that we are interested

in in this experiment is the corpus callosum as it appears in

MR brain images. Constructing an atlas for the corpus

callosum and subsequently analyzing the individual shape

variation from “normal” anatomy has been regarded as

potentially valuable for the study of brain diseases such as

agenesis of the corpus callosum (ACC) and fetal alcohol

syndrome (FAS).
We manually extracted points on the outer contour of

the corpus callosum from seven normal subjects (as

shown in Fig. 5, indicated by “o”). The recovered

deformation between each point set and the mean shape

are superimposed on the first two rows in Fig. 5. The

resulting atlas (mean point set) is shown in the third row

of Fig. 5 and is superimposed over all of the point sets.

As we have described earlier, all of these results are

computed simultaneously and automatically. This exam-

ple clearly demonstrates that our joint matching and atlas

construction algorithm can simultaneously align multiple
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Fig. 2. Results of rigid registration in the noiseless case. “o” and “þ”

indicate the model and scene points, respectively.

Fig. 3. Robustness to outliers in the presence of large noise. Errors in

the estimated rigid transform versus a proportion of outliers ðð	 � �Þ=ð�ÞÞ
for both our method and the KC method.

Fig. 4. Nonrigid registration of the corpus callosum data. Left column:
Two manually segmented corpus callosum slices before and after
registration, respectively. “o” and “þ” indicate the model and scene
points, respectively. Middle column: Warping of the 2D grid using the
recovered motion. Right column: Same slices, with one corrupted by
noise and outliers, before and after registration.
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shapes (modeled by sample point sets) and compute a
meaningful atlas/mean shape.

Fig. 6 illustrates the effect of the regularization parameter
� of the TPS in (5). As the regularization parameter varies
from 0.0001 to 0.005, we can see that the resulting atlas is
relatively stable.

The next figure (Fig. 7) shows the stability of our
algorithm by adding the eighth point set, which is shown
on the left in Fig. 7, to the original seven point sets shown in
Fig. 5. We then constructed a new atlas from these eight
point sets. From the right plot of Fig. 7, it is evident that our
algorithm yields an atlas not much different from the atlas
constructed from the original seven point sets in Fig. 5,
which confirms that the constructed atlas using our
algorithm is stable with the incorporation of more point
sets that are not largely varying from the original set.

Next, we present results on 3D hippocampal point sets.
Ten 3D point sets were extracted from epilepsy patients
with left anterior temporal lobe foci identified with EEG. An
interactive segmentation tool was used to segment the
hippocampus in the 3D anatomical brain MRI of the
10 subjects. The point sets differ in shape, with the number

of points varying from 412 to 805. Nine of the 10 hippo-

campal point sets are shown in Fig. 8. In Fig. 9, the

recovered nonrigid deformation between each hippocampal

point set to the atlas is shown, along with a superimposition

on all of the original data sets. We also show the scatterplot

of original point sets, along with all the point sets after the

nonrigid warping in Figs. 10a and 10b, respectively. An

examination of the two scatterplots clearly shows the

efficacy of our recovered nonrigid warping. Note that

validation of what an atlas shape ought to be in the real data

case is not feasible.

5 CONCLUSIONS

In this paper, we presented a novel and robust algorithm

using an information-theoretic measure, namely, the Jensen-

Shannon divergence, to simultaneously compute a prob-

abilistic mean (atlas) shape from multiple unlabeled point

sets (each represented by finite mixtures) and register them

nonrigidly to this emerging mean (atlas) shape. Atlas

construction normally requires the task of nonrigid regis-

tration prior to forming the atlas. However, the unique

feature of our work is that a probabilistic atlas emerges as a
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Fig. 5. Experiment results on seven 2D corpus callosum point sets. The first two rows and the left image in the third row show the deformation of

each point set to the atlas, superimposed with the initial point set (show in “o”) and deformed point set (shown in “�”). The middle image in the third

row shows the estimated atlas superimposed over all of the point sets. Right: The estimated atlas is superimposed over all of the deformed point

sets.

Fig. 6. Plots of the 2D atlas results with different regularization

parameters of the TPS.

Fig. 7. Illustration of the effect of adding a point set that is not largely
varying or different from the original set. On the left is the original seven
point sets augmented with a point set. On the right is the resulting atlas
compared with the atlas constructed from the original seven point sets in
Fig. 5.
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by-product of the nonrigid registration. Other advantages

of using the JS divergence over existing methods in the

literature for atlas construction and nonrigid registration

are that the JS divergence is symmetric, its square root is a

metric, and it allows the use of unequal cardinality of the

given point sets to be registered. We also showed that the

JS divergence has a number of desirable properties for use

in groupwise point set registration. For example, 1) it can be

interpreted in a hypothesis testing framework and 2) it is

unbiased, that is, our groupwise registration approach is

not biased toward any particular point set. However, the

spatial regularization term in the cost function used for

registration is not invariant in its form under a change of

variables and this constitutes a type of bias which is very

different from the possible bias toward a particular point

set. We plan to examine this issue in our future work.
The constructed atlas is a probabilistic atlas, which is

defined as the convex combination of the probability

densities/distributions of the input point sets being aligned.

The cost function optimization is achieved very efficiently

by computing the analytic gradient of the same and

utilizing it in a quasi-Newton scheme. We compared our

algorithm performance with competing methods on real

and synthetic data sets and showed significantly improved
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Fig. 8. 3D hippocampal point sets. Nine (of the 10) hippocampal point sets are shown. Note that all of the point sets were subsampled for the purpose

of display.

Fig. 9. 3D hippocampal point sets. Nine (of the 10) hippocampal point sets are shown. The deformed point sets (shown in red “þ”) are shown

superimposed on the data (shown in blue “þ”), along with the underlying space deformation. All of the point sets were subsampled for the purpose of

display.
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performance in the context of robustness to noise and
outliers in the data. Experiments were depicted with both
2D and 3D point sets from medical and nonmedical
domains. Our future work will focus on generalizing the
nonrigid deformations to diffeomorphic mappings.
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Fig. 10. Ten 3D hippocampal point sets. (a) Scatterplot of 10 3D hippocampal point sets. (b) Scatterplot of the 10 deformed point sets. Note that the

point sets were subsampled for the purpose of display.
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