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Groupwise registration has become more and more popular due to its attractiveness for unbiased analysis of
population data. One of the most popular approaches for groupwise registration is to iteratively calculate the
group mean image and then register all subject images towards the latest estimated group mean image.
However, its performance might be undermined by the fuzzy mean image estimated in the very beginning of
groupwise registration procedure, because all subject images are far from being well-aligned at that moment.
In this paper, we first point out the significance of always keeping the group mean image sharp and clear
throughout the entire groupwise registration procedure, which is intuitively important but has not been
explored in the literature yet. To achieve this, we resort to developing the robust mean-image estimator by
the adaptive weighting strategy, where the weights are adaptive across not only the individual subject images
but also all spatial locations in the image domain. On the other hand, we notice that some subjects might have
large anatomical variations from the group mean image, which challenges most of the state-of-the-art
registration algorithms. To ensure good registration results in each iteration, we explore the manifold of
subject images and build a minimal spanning tree (MST) with the group mean image as the root of the MST.
Therefore, each subject image is only registered to its parent node often with similar shapes, and its overall
transformation to the group mean image space is obtained by concatenating all deformations along the paths
connecting itself to the root of the MST (the group mean image). As a result, all the subjects will be well
aligned to the group mean image adaptively. Our method has been evaluated in both real and simulated
datasets. In all experiments, our method outperforms the conventional algorithm which generally produces a
fuzzy group mean image throughout the entire groupwise registration.
@med.unc.edu (H. Jia),
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Introduction

Groupwise registration has become more and more popular in
recent years due to its attractiveness for unbiased analysis of population
data (Crum et al., 2004;Maintz and Viergever, 1998; Zitová and Flusser,
2003). Compared to the pairwise registration, groupwise registration
can simultaneously estimate the transformation fields for all subjects
without explicitly specifying an individual subject as a template, thus
avoiding any possible bias (introduced by template selection) in the
subsequent data analysis.

One of the most popular groupwise registrations was proposed by
Joshi et al. (2004) in 2004. In their method, the groupwise registration
is implemented by iteratively constructing the groupmean image and
estimating the transformation fields of all subjects towards the
estimated tentative group mean image. However, this method has
several limitations. One major drawback of this method is that it
equally treats all subjects during the construction of the group mean
image, which can be very fuzzy especially in the beginning of
groupwise registration, since all subjects at that moment are not well
aligned. As a result, the fuzzy group mean image fails to provide clear
guidance to the subsequent pairwise registrations and leads to 1) the
loss of anatomical details which can be hardly recovered from the
initial fuzzy groupmean image; 2) the degradation of the alignment in
each round of groupwise registration due to the difficulty of
establishing reliable correspondences between sharp subject images
and the fuzzy group mean image during the iterative registration
procedure; and 3) the slow convergence of the groupwise registration
due to the lack of clear and consistent information from the fuzzy
group mean image to guide the registration.

Several follow-up papers (Fletcher et al., 2009; Ma et al., 2008)
have been published recently. To be robust with the outlier subjects,
Fletcher et al. (2009) extended Joshi's method to the Riemannian
manifold and proposed to use the geometric median of the group to
handle the possible outliers that may deviate the Fréchet mean far
away from the real population center. Rather than averaging on image
intensity, Ma et al. (2008) proposed a Bayesian-based approach to
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estimate the atlas by iteratively deforming an initial guess to the
center of the population. In this way, the final atlas is sharp but at the
expense of the bias in choosing an individual subject as the start point.
Generally, these methods still used an equal weight for all subjects to
build the group mean image. Also, their goal is the robust estimation
of the group mean image, not the groupwise registration. However,
the importance of keeping the sharpness of the group mean image
during the groupwise registration is still not addressed.

Another limitation of the conventional groupwise registration
method lies in the pairwise registrations used in each round of
groupwise registration, used to align each subject to the latest
estimated group mean image. As well known, good pairwise
registration helps estimate the clear group mean image which can
be used to better guide the next round of groupwise registration.
However, in case of large inter-subject variations, it is difficult to
register two faraway subjects with different anatomical structures
(Hamm et al., 2009; Tang et al., 2009). In light of this, several methods
have been proposed to improve the registration. For example, Tang et
al. (Kim et al., 2010; Tang et al., 2009) proposed to generate an
intermediate template sufficiently similar to each subject for
improving the registration. Since the deformation from the template
to any intermediate template is pre-known in the training stage, the
final registration can be completed by compositing the deformation
from the template to the intermediate template with the deformation
from the intermediate template to the subject under registration.

In addition, Hamm et al. (2009) presented the tree-based method
for groupwise registration. In their method, the pseudo-geodesic
median image is selected as the root template after learning the
intrinsic manifold of the whole data set. Since a fixed image (i.e., the
root image) is used as the final template to register all other subjects,
the bias is inevitably introduced in this scenario due to the possible
discrepancy between the selected template and the real population
center. However, this method benefits from the tree-based organiza-
tion of images for registration. Specifically, since the subjects are
organized in the tree-based hierarchy by considering each subject
image as the node, any pair of neighboring images in the tree is similar
to each other. Therefore, even for the subject having large anatomical
differences from the root subject, it can be still well-aligned through
the registration path from its node to the root.

The goal of this paper is to outline the limitations of the
conventional groupwise registration (Joshi et al., 2004) and then
propose solutions to improve its performance. Specifically, we will first
point out the importance of always keeping a sharp group mean image
during the groupwise registration. To achieve the sharp group mean
image without introducing bias, we generalize the conventional
groupwise registration method by defining a new objective function.
Specifically, we treat each subject adaptively throughout the registra-
tion. Only the registered subjects that are close enough to the
tentatively-estimated group mean image will be involved in updating
the group mean image, since equally treating the subjects in the early
stage will lead to the irreversible loss of structural details especially
when most subjects are not well aligned in the beginning. As the
registration progresses, subjects are more likely to agglomerate to the
population center. Then, more subjects will be allowed to participate
into the construction of the group mean image and their contributions
will gradually become similar to others. Working under this scenario,
the group mean image in our method will gradually approach to the
population center, as will be shown by our experimental results on
simulated dataset.

The other contribution of this paper is that we improve the
registration accuracy of each subject to the group mean image by a
tree-based registration. In our method, we do not assume small
anatomical differences between individual brain images. As mentioned
above, registering two subjectswith large differences usually challenges
the state-of-the-art registration algorithms, and the bad registration
results will undermine the sharpness of the group mean image. We
resort to employing a tree-based hierarchical registration method
(Hammet al., 2009; Jia et al., 2010b) to register each subject to the latest
estimated groupmean image. Specifically, considering each subject as a
node in the tree, we can set the sharp groupmean image, instead of any
individual subject, as the root of the minimal spanning tree (built upon
the image distances of each possible pair of subjects). The benefit of
using the tree-based registration is that the registration accuracy can be
greatly improved, since each subjectwill be registered only to its nearby
subject (with similar anatomy) and its complete registration to the
group mean image can be estimated by compositing all deformation
fields along its path to the group mean image (the root of tree).

In our previous work, we proposed a robust groupwise registration
method, called ABSORB, in (Jia et al., 2010a). To overcome the limitation
of fuzzy group mean in the conventional method (Joshi et al., 2004),
ABSORB perform the registration in the conservative way: each subject
will only deform w.r.t. its neighboring subjects within a learned image
manifold. The advantage is that the global structure, or the distribution
of subject images in their intrinsic high-dimensional space, is always
preserved during the groupwise registration procedure. However, the
computation time is much longer than the conventional method. In this
paper, we attack the problem of fuzzy mean image in a different way
where we replace the fuzzy group mean image with the sharp one to
deterministically guide the registration. Therefore, we are able to
achievemuch faster groupwise registration thanABSORB and evenwith
better registration performance as will be shown in the experimental
results.

In experiments, we demonstrate the advantage of our method by
integrating with the Diffeomorphic Demons registration algorithm
(Vercauteren et al., 2009), and also compare its performance with the
tree-based registrationmethod (Hamm et al., 2009), the conventional
groupwise registration method, and ABSORB (Jia et al., 2010a).
Extensive experiments on 16 NIREP Data (Christensen et al., 2006)
and 40 LONI LPBA40 data (Shattuck et al., 2008a, 2008b) show that
our proposed method outperforms the tree-based method, the
conventional groupwise registration method, and ABSORB in terms
of both registration accuracy and consistency.

In the following, we will present our improved method for
groupwise registration in Method section. After that, our proposed
method will be intensively evaluated and further compared with
other three groupwise registration methods in Experiments section.
We conclude in Conclusion section.

Method

In the framework of unbiased groupwise registration (Joshi et al.,
2004), the deformation fields are estimated by iteratively registering N
subjects to the latest estimated group mean image. In the t-th round of
registration (t=1,…,T), the group mean image Mt is generated by
averaging upon the intensity of the current warped subjects
It = Its xð Þ j Its xð Þ = I0s gts xð Þ� �

; s = 1;…;N; t = 1;…; T; x∈R3� �
w.r.t. the

current estimated transformation fields Gt={gst|s=1,…,N, t=1,…,T}.
Each gs

t is calculated by consideringMt−1 as the template and Is
0 (affine

aligned subject) as themoving images. It isworth noting thatG0 are only
the initial affine transformations.

Fig. 1 illustrates the framework of the conventional unbiased
groupwise registration (Joshi et al., 2004). The dashed arrows denote
the pairwise registrations in each round of registration, which are
used to deform each subject to the common space of the current group
mean image. The solid arrows indicate the evolution of the group
mean image with the progress of registration, where the group mean
image gradually marches from a gray rectangle (in the first round of
groupwise registration) to a final pink circle (in the later round of
groupwise registration), as shown in Fig. 1. Here, the red star denotes
the real population center. The convergence of this groupwise
registration is guaranteed according to the convexity of the distance
function (Joshi et al., 2004). However, this algorithm is not robust to



Fig. 1. The schematic illustration of the unbiased groupwise registration algorithm (Joshi et al., 2004). In each round of groupwise registration, all subject images will be registered
onto the latest estimated group mean image (shown by dashed arrows), to obtain a new updated group mean image. With the evolution of the group mean image (shown by gray
rectangle in the beginning to the red circle in the final), all subjects will be warped closely to the population center.
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the outlier subjects (i.e., less registered subjects, especially in the
beginning of groupwise registration), although its finally estimated
group mean image (the pink circle) might be close to the real
population center. We will explain this clearly in the following.

In the conventional groupwise registration (Joshi et al., 2004), the
problem of estimating the group mean image M is formulated as a
statistical estimation problem:

Ĝ;M̂
n o

= arg min
Gt ;Mt

∑
N

s=1
∑
x
‖
0
s gts xð Þ
� �

−Mt xð Þ‖2 + dist e; gts
� �� 	

; ð1Þ

where the term dist(e,gst) is the distance between the identity
transformation e and gs

t (Avants and Gee, 2004; Miller, 2004; Miller
et al., 2002; Vercauteren et al., 2009). By fixing the transformation
field gs

t, the estimation of the group mean image is obtained as
Mt xð Þ = 1

N∑N
s=1 I

t−1
s xð Þ, which is the simple average of the warped

images according to the current-estimated deformations. It is obvious
that this kind of method assumes only one center in the population.
The work dealing with multiple centers can be found in (Blezek and
Miller, 2007; Sabuncu et al., 2009; Wang et al., 2010).

As pointed in (Fletcher et al., 2009), the major drawback of this
method is the poor robustness to the outliers because the contribu-
tions (or the weights) are the same for not only all subjects in the
population, but also all voxels in each subject. Therefore, even single
outlier image will dramatically mislead the estimation and lead to the
fuzzy group mean image. In the following, we will first point out the
Importance of always keeping sharpness of the group mean image
during registration in Motivation section. Then, we will propose an
improved objective function in Objective function section, and explain
the solution in Optimization scheme section. Finally, we will
summarize our proposed groupwise registration method in Summary
section.

Motivation

Unbiased groupwise registration method (Joshi et al., 2004) seeks
to iteratively estimate the group mean image and register each
subject to the tentative group mean image. However, the initial group
mean image M1 = 1

N∑N
s=1I

0
s xð Þ, generated right after the linear

alignment, is generally very fuzzy, since the subjects Is
0 are not well

aligned in the beginning of registration. According to our knowledge,
few articles have addressed the importance of keeping the sharpness
of the group mean image during the registration. Indeed, the fuzzy
group mean image would undermine the groupwise registration
performance in two ways: 1) it is difficult to register an individual
subject with clear anatomical structures to the group mean image
with fuzzy structures; 2) a fuzzy group mean image will challenge the
convergence of optimization since it might not provide sufficient
anatomical information to guide the registration. The importance of
the sharp group mean image in groupwise registration is demon-
strated in Fig. 2 by 61 toy images, which are distributed in three
branches. Each branch (with 20 images) is generated from the same
base image with a red box in Fig. 2(a), to represent one type of cortical
folding. For clarity, only three images (i.e., 1st, 10th, and 20th) in each
branch are shown as examples. Before registration, the group mean
image is very blurry (as shown in Fig. 2(b)). If the groupwise
registration starts from this fuzzy group mean image, it will result in
an unsatisfactory group mean image (as shown in Fig. 2(b)), since the
fuzzy group mean image is not able to informatively guide the
groupwise registration of individual images.

This toy example shows the importance of always keeping the
sharpness of the group mean image during the groupwise registration.
The fundamental reason why the conventional method fails is illustrated
in Fig. 3. For easy explanation, we project all 61 images in Fig. 2(a) onto a
two-dimensional (2D) space with PCA, as shown by blue circles in Fig. 3,
where each branch represents one type of folding pattern. In the
conventional method (Joshi et al., 2004), all subjects are equally treated
in building the group mean image, regardless of their anatomical
differences. This equal weighing strategy, throughout the whole registra-
tion, is shown as flat greenmeshes in Figs. 3(a)–(c). As a result, the group
mean imageobtained in thefirst roundof registration (shown in Fig. 2(b))
is not only fuzzy but also located far away from the real population center
(shown in Figs. 3(b) and (c)), where the red triangles denote for the
warped results of all subjects w.r.t. this fuzzy group mean image after
projecting them onto the same 2D PCA space. Since the detailed
anatomical information has already been lost in the first round of
registration, it can be hardly recovered and moved back to the real
population center. Fig. 3(c) shows the final groupwise registration result
by the conventional method, where the warped subjects are not close to
each other and also far away from the real population center.

Instead of equally weighting all subjects, we propose to adaptively
weight subjects based on their distances to the latest estimated group



Fig. 2. A toy example demonstrating the importance of always keeping the sharpness of the group mean image during the groupwise registration. The synthetic data are shown in
(a). (b) shows the groupwise registration results starting with a fuzzy group mean image, which was achieved by equally weighting all warped subject images in the population.
(c) demonstrates the results by the proposed method which starts with the sharp groupmean image and always keeps its sharpness during the registration by adaptively weighting
each warped subject image for building the group mean image (see the method in Objective function section).
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mean image. In the above example (Fig. 3), the distance metric
between two images is the sum of squared differences on image
intensity. Our idea has been demonstrated through Figs. 3(d)–(f).
Specifically, given an estimated group mean image Mt−1 from the
previous round of registration, the contribution of each subject in
constructing a new group mean image Mt should be dynamically
Fig. 3. Demonstration of the advantage of our proposed method. The blue circles in (a)–(f) de
different weighting strategies and registration results by the conventional method (with equ
we propose assigning large weights to the subjects nearby the group mean image, while sma
registration are displayed with red meshes in (d)–(f), where the shape of the red meshe
conventional method and our proposed method are specially shown in (b–c) and (e–f), resp
determined according to its tentative warping result Is
t−1. For each

warped subject Is
t−1, the closer of its distance to Mt−1 is, the larger

weight it should have to contribute in the construction of Mt. To
estimate Mt, adaptive weightings for all subjects can be determined
based on the distances of those warped subjects to the previous group
mean imageMt−1. However, the way on how to obtainM0 in the first
note the projection of 61 toy images of Fig. 2 in the 2D PCA space. (a–c) and (d–f) show
al weighting) and our method (with adaptive weighting), respectively. In our method,
ll weights to those faraway subjects. The weights for each image throughout the whole
s changes from sharp to flat. The evolutions of groupwise registration results by the
ectively, where the red triangles denote the warped subjects in the same 2D PCA space.

image of Fig.�3
image of Fig.�2
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round of registration is still unclear. Since we do not have much
knowledge on the population center in the beginning, we first select
the median image Ic among I0 as the M0 by performing the following
operations:

M0 = Ic; c = arg min
i

∑
N

j=1; j≠i
d I0i ; I

0
j

� �
; ð2Þ

where d is the distancemeasurement between two images. Although the
advanced geodesic distance can be usedhere,we turn to use the Euclidian
distance due to its simplicity. It is clear that Ic has the minimum sum of
distances to all other subjects. Setting M0 as the median image Ic has the
advantageof closeness to thepopulation center. Therefore,weuse Ic as the
reference image to calculate the weight for each Is

0 in the first round of
groupwise registration according to d(Ic, Is0). Fig. 3(d) shows the reference
image Ic for 61 toy images in Fig. 2(a), which is very close to the baseline
image that we used to generate three branches of images with different
cortical foldings. As shown in Fig. 3(d), only the subjects close to Ic will
have high weights in constructing M1, while the faraway subjects have
very low weights. The weights used in our method are displayed by the
red meshes in Figs. 3(d)–(f), where the shapes of these meshes changes
from very sharp in the beginning to very flat in the end of registration. As
displayed in Fig. 2(c), the performance of groupwise registration has been
significantly improved with our adaptively weighted M1, compared to
that by the conventional method in Fig. 2(b). Similarly, we project the
warped results in the first and the final rounds of registration onto the
same2DPCA space, as shown in Figs. 3(e) and (f), respectively. Obviously,
our groupmean image is more reasonable andmuch clearer than that by
the conventionalmethod, and importantly all subjects have agglomerated
very closely to the real population center. In the following section,wewill
detail our algorithm for achieving the sharp group mean image and
improving the overall registration performance.

Objective function

As demonstrated in Motivation section, different subjects should
have different dynamic weights, instead of equal and fixed weights,
during the groupwise registration. On the other hand, each anatomical
region in each subject may have its own difference from the respective
region in the group mean image. Therefore, applying the same weight
(generally obtained from the entire subject) to all anatomical regions of
the same subjectmay lead to different fuzziness across different regions
of the group mean image. Tomathematically formulate these problems
and solve them together, we propose two strategies below.

First, we propose a distance measurement for each voxel x w.r.t.
the current group mean imageMt and the warped subject image Is

t as:

D Its;M
t
; x; b

� �
= ∑

y∈Pb xð Þ
‖ Its yð Þ−Mt yð Þ‖2; ð3Þ

where Pb denotes a local image patch centered at voxel x, with the
neighborhood size b. The term D measures the overall intensity
difference between the corresponding local image patches (centered
at x) in the images Ist andMt, by visiting all voxels y in the neighborhood
Pb(x). Although other advanced geodesic distance (defined in the
manifold) can be employed, the simple intensity difference is used here
for easy computation. On the other hand, recall that Ist= Is

0(gst(x)), thus
the distance measurement in our method is also the function of
transformation field gs

t, albeit implicit. It is worth noting that D
approaches to the image distance between two entire images when b
is large enough, while D becomes voxel-wise difference in Eq. (3) when
b converges to 1. Since the registration results are usually refined from
global shape to local shape, the value of b is large in the initial round of
registration and then gradually decreases with the progress of
registration. We will describe the way to dynamically change the size
of b in Eq. (8) of Optimization scheme section.
Second, to treat each subject differently, we introduce a hidden
variableωs

t(x) (s. t.∑s=1
N ωs

t(x)=1,∀x∈R3) to indicate the contribution
of eachwarped subject Ist in the construction of the groupmean image at
a particular voxel x. In the initial rounds of registration, all subjects are
not well aligned (especially right after affine registration). If we equally
weight all subjects (i.e., the entropy of theweighting set {ωs

t(x)|s=1,…,
N} is high), it will lead to a fuzzy mean image as demonstrated in Fig. 2.
To keep the sharp group mean image throughout registration, only
thosewarpedsubjects Ist that are close enough to the currently estimated
groupmean imageMt−1 are qualified to have largeweights ωs

t(x),while
other subjects arepenalizedwith smallweightsωs

t(x).With theprogress
of registration, all subjects will likely agglomerate to the population
center. At that moment, all Ists, as long as they are close enough to the
groupmean image, will contribute almost equally to the construction of
the group mean image, thus providing opportunity to estimate an
unbiased groupmean image. Since all subjects are already well aligned,
very little fuzziness will be introduced to the groupmean image. In this
paper, the dynamic changes of weights {ωs

t(x)|s=1,…,N} from strictly
binary to loosely uniform are controlled by requiring the entropy of the
weighting set {ωs

t(x)|s=1,…,N} to increase with the progress of
registration.

By replacing the distance measurement with Eq. (3) and adding
the dynamic control of weights of subjects to the objective function,
we arrive at a new objective function for groupwise registration as:

F ωt
;Mt

;Gt
� �

= ∑
N

s=1
∑
x

ωt
s xð Þ⋅D Its;M

t
; x; b

� �
+r⋅ωt

s xð Þ⋅log ωt
s xð Þ

� �h i
+

1
σg

dist e; gts
� �( )

;

subject to : ∀x∈R3
; ∑

N

s=1
ωt

s xð Þ = 1:

ð4Þ

Where the scalar r controls the penalty of large distance from Is
t to Mt.

σg is used to balance the strength of regularization in the objective
function. Compared with the objective function in the conventional
method (Eq. (1)), our formulation generalizes the objective function
in (Joshi et al., 2004) by introducing the adaptive weights ω for not
only each subject but also each spatial location in the common space.
We will show its important role when explaining the solution to
Eq. (4) in Optimization scheme section.

Optimization scheme

It is non-trivial to simultaneously optimize F in Eq. (4) with many
parameters. Instead, we resort to decoupling it with two sub-problems,
i.e., alternatively (Sub-Problem 1, SP1) estimate the group mean image
and (Sub-Problem 2, SP2) estimate the transformation fields for all
subjects. First, given thewarping results It−1 (w.r.t.Gt−1) in the last round
of registration, compute the optimal ωt. Then the mean image Mt in the
current round can be estimated according toωt. Second, using Gt−1 as the
initialization, we employ the pairwise registration algorithm (e.g.,
Diffeomorphic Demons (Vercauteren et al., 2009)) to calculate the
transformation field Gt for each subject Is0 towards Mt. As a result, new
warped results It are ready for the next round of registration. Therefore,
with the progress of groupwise registration, all Ist become closer and
closer to the group mean image Mt gradually.

SP1: Estimate the adaptively weighted group mean image
After registering each I0 with Mt−1 in the previous round of

registration, we are able to obtain the transformation field Gt−1 as well
as the warped subjects It−1. Discarding all variables irrelevant withωt

and Mt, the objective function F turns out to be:

F1 ωt
;Mt

� �
= ∑

N

s=1
∑
x

ωt
s xð Þ⋅D It−1

s ;Mt−1
; x; b

� �
+ r⋅ωt

s xð Þ⋅log ωt
s xð Þ

� �n o
:

ð5Þ
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The optimal solution to ωs
t(x) in Eq. (5) can be immediately

calculated by setting ∂F1/∂ωs
t(x)=0. After removing the constant, the

estimation of weight ωs
t(x) on each voxel x is given as:

ω̂t
s xð Þ = exp −

D It−1
s ;Mt−1

; x; b
� �

r

0
@

1
A ; ω̂t

s xð Þ← ω̂t
s xð Þ

∑N
s=1ω̂

t
s xð Þ ð6Þ

where ω̂t
s at location x is highly related with two parameters: the

temperature r and the neighborhood size b. Here the parameter r is
used to control the fuzzyness of the mean image, acting as the inverse
temperature in the annealing system based on our observations in
Motivation section. Initially, the degree of r is low, i.e., the
contribution of particular subject in constructing the group mean
image will decrease in the exponential way unless it is very close to
the current groupmean image. This strategy is used to keep the group
mean image sharp. With the progress of groupwise registration, all
subjects become closer to the population center; at that time, the
temperature r will be increased to encourage equal weighting of all
warped subjects Is

t. Given the overall number of iterations T, the
temperature in the t-th round is determined as:

r tð Þ = r0 + Δr⋅
t
T
; ð7Þ

where r0 is the initial temperature and Δr denotes the step length of
temperature increase. In all of our experiments, we set r0=1 and

Δr = maxs d I0s ; Ic
� �

, where Ic is the median image among I0.

To cater for the possible misalignment, especially in the initial
rounds of groupwise registration, we use the neighborhood size b to
adaptively control the scale, i.e., from global to local, in measuring the
image similarity. Therefore, the weight ω̂t

s xð Þ used for averaging
warped images is different across not only the subjects but also spatial
locations in the group mean image space. The value of b in the t-th
round of registration is given as:

b tð Þ = b0⋅ 1− t
T


 �
+ 1; ð8Þ

where b0 is the whole image size. When the iteration t increases to T,
b(T)=1 and D in Eq. (3) becomes the voxelwise intensity difference.

After determining the weight ω̂t
s xð Þ for each subject Is at each

location x by Eq. (6), the calculation of the group mean imageMt(x) at
each location x is straightforward by setting ∂F1/∂Mt(x)=0 (with the
derivation given in the Appendix A):

M̂
t
xð Þ = ∑

N

s=1
ψt
s xð Þ⋅It−1

s xð Þ; ψt
s xð Þ = 1

Pb xð Þj j ∑
y∈Pb xð Þ

ω̂t
s yð Þ ð9Þ

where |Pb(x)| is the total number of pixels in the local image patch Pb
(x). It is clear that (1) the group mean image is the weighted average
of all currently registered subjects in the common space; (2) the
weight ψs

t is adaptive to each subject according to its contribution ω̂t
s

calculated in Eq. (6); (3) the weight ψs
t is also locally adaptive since

the ω̂t
s is computed from the local patch discrepancy.

It is worth noting that M1 in the first round of registration is the
equally weighted average of affine aligned subjects in the conven-
tional groupwise registration (Joshi et al., 2004), which could be very
fuzzy (see Fig. 2(b)). In ourmethod, however,M1 is theweighedmean
image of all warped subjects, where the weights are calculated by
taking the median image Ic as the reference. Moreover, no bias is
introduced to our method for the following reasons: 1) Ic is only used
as the reference to calculate the contribution of each subject, instead
of using it as a direct template for registration; 2) we gradually
increase the temperature r to ensure that all warped subjects have the
opportunity to equally contribute to the construction of the group
mean image as long as they are well registered. This argument will be
further supported by the experimental results below.

SP2: Estimate the transformation field

By fixing ω̂t
s and M̂

t obtained in SP1, the objective function in this
step becomes (with the derivation given in Appendix B):

F2 Gt
� �

= ∑
N

s=1
F2 gts
� �

; F2 gts
� �

= ∑
x

1
σ t
s xð Þ ‖ I

0
s gts xð Þ
� �

−M̂
t
xð Þ‖2+ 1

σg
dist e; gts

� �
;

ð10Þ

where σ t
s xð Þ = 1 =∑y∈Pb xð Þω̂

t
s yð Þ. Here we assume each gs

t is indepen-
dent. Therefore, the solution to each gs

t is a well-known optimization
problem of quadratic objective function as discussed in many gradient-
based registration algorithms (Vercauteren et al., 2008, 2009). The
regularization term dist(e,gst) is related with the pairwise registration
algorithm used in our method. For example, dist(e,gst) denotes the
geodesic distance in LDDMM method (Beg et al., 2005) whose velocity
is the function of time starting from template to subject. In this paper, we
use Diffeomorphic Demons (Vercauteren et al., 2009) as the pairwise
registration component. Therefore, the regularization term on each
transformation field gs

t is defined as the geodesic distance but with
constant velocity.

Usually the transformation field ĝts is independently solved by
taking Mt as the template in registration. By taking those 61 toy
images in Fig. 2 as examples, the procedure of registering each Is

t−1 to
Mt is shown in Fig. 4(a). However, there might exist large anatomical
variations among the subjects. Assuming all subjects reside on the
manifold, it is relatively easy for the pairwise registration algorithm to
align two nearby subjects than two faraway subjects. In light of this,
we employ a tree-based registration method (Fig. 4(b)), where each
subject will only register to its nearby subject on the manifold. To
achieve it, we first define the measurement of distance between two
subjects IA and IB as:

d IA; IBð Þ = ∑
x
D IA; IB; x; bð Þ; ð11Þ

where D(.) is defined in Eq. (3) with the neighborhood size b. Let
Q={{Ist−1},Mt} as a set of images under registration in Step 2 (SP2)
of the t-th round of groupwise registration. The distance between any
two subjects in Q can be calculated by Eq. (11). Then, a fully connected
graph can be built by considering each subject as the node and the
manifold distance as the edge weight. Next, the minimal spanning tree
(MST) is extracted from the graph, using Kruskal's algorithm (Kruskal,
1956),whereMt is set as the root node since the goal of step 2 (SP2) is to
calculate the transformation field from each subject Ist−1 to Mt. In this
way, all images can be organized into a tree structurewhere only similar
images are connected. The advantage of using the tree-based registra-
tion is obvious: It allows the subjects to be aligned more robustly and
accurately to the current group mean image, especially for the subjects
far away from the population center.

Fig. 4(b) demonstrates the procedure of MST-based registration in
our method. In registering each subject Is

t−1 with Mt, the pairwise
registration algorithmwill be employed between Is

t−1 andMt if Ist−1 is
directly connected with Mt (root node). Otherwise, the registration is
performed sequentially along the path determined during the
construction of the MST. For clearly describing SP2 in our method,
we briefly summarize it as follows:

1. Calculate the distance between any pair of images in the set Q
according to Eq. (11);

2. Construct the fully connected graph;
3. Extract the MST by setting Mt as the root node;
4. For each subject Ist−1∈ It−1,s=1,..,N :

(a) If the transformation field from Is
t−1 to Mt is already computed,

then exit;



Fig. 4. (a) Pairwise registration is independently performed for each subject, regardless of its difference to the current groupmean image. (b) OurMST-based registration framework
is used in each round of groupwise registration, where all subjects are organized into a tree-based hierarchy by considering each subject as the tree node. In our registration, each
subject will be sequentially registered to its parent nodes one by one until it reaches the root node (i.e., the group mean image).
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(b) Otherwise, transverse from node Is
t−1 to Mt by composing all

transformationfields fromthe currentnode to its parentnodeand
then the next level of parent nodeuntil reaching the root nodeMt.

(c) Obtain the overall transformation field for Ist−1 by composing all
transformation fields along the path from Is

t−1 toMt. This overall
transformation field will be used as a good initialization to
estimatemore accurate transformationfield between Is

t−1 andMt.

Summary

Compared to the conventional method the advantages of our
method are: 1) the group mean image is a weighted average of aligned
subjects (Eq. (9)), instead of a simple arithmetic average. Weights are
adaptively determined not only for each aligned subject Ist, but also for
each image location x; 2) the contribution of each subject is dynamically
adjusted throughout the groupwise registration in the annealing
scenario; 3) the sharpness of the groupmean image is always preserved
throughout the registration; 4) the registration accuracy in each round
of groupwise registration has been improved by using the MST-based
hierarchical registration framework.

For comparison, we first summarize the conventional method as
follows:

Assume I0 is the set of affine aligned subjects.
1. Compute the groupmean imageM1 in thefirst round of registration by

averaging all Is0s with equal weight;
2. Set t=1;
3. Register each subject Is

0 to the currently estimated Mt by
Diffeomorphic Demons (Vercauteren et al., 2009) and get the
registration result Ist;

4. Compute the group mean image Mt+1 by averaging all Ists with
equal weight;

5. Set t← t+1;
6. Loop from step 3 to step 5 until convergence or reaching the

abortion criterion (t=T).
Our new groupwise registrationmethod is summarized as follows:

1. Calculate the median image Ic among the population by Eq. (2);
2. Set t=1, r0=1, Δr=maxsd(Is0, Ic), and b0 the whole image size;
3. Initialize each gs

0 with only affine transformation to the median
image Ic;

4. Set M0= Ic and calculate the weight of each Is
0 by Eq. (6);

5. Compute the group mean image M1 in the first round of
registration by Eq. (9);

6. Build the MST on the image set Q={{Ist−1},Mt};
7. Register each subject Is

0 to the currently estimated Mt by the
MST-tree-based registration (Diffeomorphic Demons (Vercauteren
et al., 2009) is used here as the pairwise registration component);

8. Warp the original subject Is0 to the group-mean-image space by gs
t,

thus obtaining Is
t for the next round of registration;

9. Calculate the weight of each current-warped subject Ist by Eq. (6);
10. Compute the group mean image Mt+1 by Eq. (9);
11. Set t← t+1;
12. Loop from step 6 to step 11 until convergence or reaching the

abortion criterion (t=T).

The diagrams of the conventional method and our groupwise
registration method are shown in Figs. 5(a) and (b), respectively. As
summarized in the conventionalmethod, the construction of groupmean
image and the registration of each subject to the group mean image are
integrated to help each other for reaching the goal of groupwise
registration. Our method improves each of these two steps, i.e., building
the sharp mean image by dynamic and adaptive weighting of warped
subjects and also performing registration of each subject to the group
mean image by the tree-based method. Thus, our method can produce
better results as detailed below.

Experiments

In our experiments, we have extensively evaluated the perfor-
mance of our groupwise registration method in atlas construction and

image of Fig.�4


Fig. 5. Diagrams for the conventional method (a) and our method (b). The step numbers in the figure are consistent to those used in Summary section for the two methods.
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ROI labeling. For comparison, we set the tree-based registration
method (Hamm et al., 2009), the conventional groupwise registration
method (Joshi et al., 2004), and the ABSORB (Jia et al., 2010a) as the
baseline methods. It is worth noting that the tree-basedmethod is not
the groupwise registration method, since it needs to first set an
individual image as the root and then register all other subjects to the
root image. The latter two methods are both groupwise registration
methods. To be fair, Diffeomorphic Demons algorithm (Vercauteren
et al., 2009) is used as the pairwise registration component in all these
four methods (including our method). Also, we use the same iteration
number T for both the conventional method and our method.

We first evaluate the group mean image and the overlap ratios on
WM, GM, and ventricle (VN) for 18 elderly subjects. Then, we
compare the overlap ratios of aligned ROIs using NIREP dataset
(http://www.nirep.org/) and LPBA40 dataset (http://www.loni.ucla.
edu/Atlases/LPBA40), which have 32 and 54 manually delineated
labels for each brain image, respectively.

The overlap ratio of ROIs is an important criterion to judge the
registration performance. Here we use the Jaccard Coefficient metric
(Jaccard, 1912) to measure the alignment of two regions with same
label. For the two registered regions A and B, the Jaccard Coefficient is
defined as:

J A;Bð Þ =
A∩ B
��� ���
A∪ Bj;�� ð12Þ

where | ⋅ | denotes the volume of the underlying region. Since there is
no template with labeling information in the groupwise registration,
Fig. 6. 18 elderly brain images used for the evaluation of the tree-base
we need to vote a reference image before calculating the overlap ratio
on each ROI. Here, we vote the tissue assignment of each voxel with
the majority of all tissue labels at the same location from all the
aligned subjects. Then, the Jaccard Coefficient between each regis-
tered subject image and the voted reference will be calculated. It is
worth noting that we use this procedure to evaluate the overlap ratio
for all four registration methods. In the following experiments, we
report the average score of Jaccard Coefficients as the overlap ratio for
each tissue label and ROI.
Experiment on 18 elderly brains

Fig. 6 shows a group of 18 elderly brain images. Each image has the
size of 256×256×124 and the resolution of 0.9375×0.9375×1.5mm3.
It can be observed that the anatomical structures vary a lot across
different subjects, especially for the ventricle and cortex.

Conventional groupwise registration method starts from a very
fuzzy group mean (with its 3D rendering shown in blue box of Fig. 7).
On the contrary, our method begins with a clear group mean image
(as shown in red box of Fig. 7), which is close to the population center.
The evolutions of the group mean image by the conventional and our
registration methods are provided in the top and bottom rows,
respectively. It is clear that, although the final group mean images are
similar by both methods, ours is much sharper than that by the
conventional method. Also, this experiment has demonstrated that
our method will not introduce bias in the final group mean image
since the group mean images by two methods (ours and the
conventional unbiased registration method) are very similar. To
d registration method and three groupwise registration methods.

http://www.nirep.org/
http://www.loni.ucla.edu/Atlases/LPBA40
http://www.loni.ucla.edu/Atlases/LPBA40
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Fig. 7. The evolution of the groupmean image. The evolutions of the conventional groupwise registration starting with a fuzzymean (in blue box) and ourmethodwith a sharpmean
(in red box) are displayed in the top and bottom rows, respectively.
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better evaluate the group mean images by these two methods, we
show six transverse views in Fig. 8.

To quantitatively measure the registration accuracy by overlap
ratio, we first vote a reference image based on thewarped results of all
(tissue-segmented) subject images, as mentioned in the beginning of
this section. Then, the overlap ratio is calculated between each
warped subject image and the reference image one by one. Table 1
reports the overlap ratio on white matter (WM), gray matter (GM),
and ventricle (VN) by the tree-based method and three groupwise
registration methods, respectively. The average overlap ratio on three
tissues (WM, GM, and CSF) is 68.12% by the tree-basedmethod, which
is lower than any of the groupwise registration method. This
demonstrates the advantage of groupwise registration over the tree-
based registrationmethod which has bias in selection of template and
thus may affect registration of a group of subjects. For the groupwise
registration methods, the overlap ratio is 78.07% by our method and
70.84% by the conventional method, indicating a 7.23% improvement.
Compared to the ABSORB method, the overlap ratio by our method is
also slightly better, with 2% improvement. The standard deviations on
Fig. 8. Six transverse views of the group mean image
three tissues by these four methods are also reported in Table 1.
Accordingly, we show themaps of overlap onWM, GM, and VN by the
tree-based method, the conventional method, the ABSORB method,
and our method in Figs. 9(a)–(d), respectively.

Although the evolution of the group mean image can be visually
inspected in Fig. 7, we further quantitatively plot the evolution curves of
the tissue overlap ratio during the groupwise registration by the
conventionalmethod and ourmethod. Todemonstrate the advantage of
employing the adaptive and dynamic weighting strategy (controlled by
the local distance measurement D and the gradually decreased
temperature r in Eq. (6)), we also set the median image as the initial
group mean and then allows the conventional groupwise registration
method to perform the rest of registration. We call this method as
“pseudo sharp mean” method. Fig. 10 shows the evolution curves of
overlap ratio of white matter (Fig. 10(a)), gray matter (Fig. 10(b)), and
ventricle (Fig. 10(c)) with respect to the iteration number. It can be
observed that the performance of the conventional method and the
“pseudo sharpmean”method is comparable and their overlap ratios are
much lower than ours, not only in the endof registration but also during
s by the conventional method and our method.

image of Fig.�7
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Table 1
Overall overlap ratios and standard deviation of WM, GM, and VN by the tree-based registration method, the conventional groupwise registration method, ABSORB algorithm, and
our registration method.

WM GM VN Overall

Tree-based method 68.15% (±1.96%) 59.74% (±3.51%) 76.51% (±3.08%) 68.12% (±2.85%)
Conventional method 73.88% (±1.52%) 60.51% (±2.28%) 78.14% (±3.53%) 70.84% (±2.44%)
ABSORB 79.01% (±1.27%) 66.82% (±2.60%) 82.33% (±2.24%) 76.05% (±2.04%)
Our method 81.36% (±1.11%) 70.29% (±3.03%) 81.72% (±2.36%) 78.07% (±2.16%)
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thewhole registration procedure. Specifically, the “pseudo sharpmean”
method still produce worse results, compared to ours, although it has
the same performance in the first iteration as our method's. The reason
is that, even using the median image as the initial group mean image in
the “pseudo sharp mean”method, the subsequently constructed group
mean images by simple averaging the warped subjects are still fuzzy,
thus suffering the same problem as the conventional method.

Besides providing the evaluation on overlap ratios, we further
quantitatively evaluate the registration consistency according to the
entropy of tissue probability on each brain voxel across 18 aligned
subjects. Note that lower entropy indicates more consistent registra-
tion results across individual subjects. The average entropy value is
0.72 after affine registration. After non-rigid registration, the average
entropy value is 0.54 by the tree-based method, 0.51 by the
conventional method, 0.42 by ABSORB, and 0.34 by our method.
Again, our groupwise registration method achieves the best perfor-
mance in terms of registration consistency.
Experiment on NIREP data

In this experiment, we align 16 brain subjects in NIREP dataset
(Christensen et al., 2006) by the tree-based method and all three
groupwise registration methods, respectively. The NIREP dataset
consists of 16 3D MR images of 8 normal male adults and 8 normal
female adults, each with 32 manually-delineated gray matter ROIs. All
16 MR images have been aligned according to the anterior and
posterior commissures (AC and PC). The image size is 256×300×256,
and the voxel dimension is 0.7×0.7×0.7mm3.

After calculating the overlap ratio for each ROI after the
registration of 16 images, the overall overlap ratio is 61.69% by the
tree-based method, 61.25% by the conventional groupwise registra-
tion method, 65.31% by ABSORB, and 66.66% by our groupwise
Fig. 9. The overlap of VN, GM, and WM by the tree-based method, the conventi
registration method (which achieves the highest overlap ratio among
all four methods). Fig. 11 shows the overlap ratio in each ROI by the
three groupwise registration methods with blue for the conventional
method, green for ABSORB, and red for our method, respectively.
Furthermore, we use the blue “†” and red “*” to designate the
significant improvement of overlap ratio (with the p-value less than
0.05 in t-test) on ROIs by our groupwise registration method,
compared to the conventional method and ABSORB, respectively. It
can be observed from Fig. 9 that our method outperforms the
conventional method in all ROIs, demonstrating the importance of
always keeping the sharpness of the group mean image during the
entire registration procedure. Compared with ABSORB, our method
has obtained significant improvements on 20 out of 32 ROIs.
Experiment on LONI LPBA40 data

In this experiment, we use the LONI LPBA40 dataset (Shattuck
et al., 2008a, 2008b) with 40 brain images and 54 manually labeled
ROIs in each brain image. Similarly, we employ the tree-based
registration method and three groupwise registration methods to
align these 40 brain images, respectively. The overall overlap ratio is
66.95% by the tree-based method, 66.36% by the conventional
method, 69.50% by ABSORB, and 70.36% by our method. Fig. 12
shows the overlap ratios in all 54 ROIs by the three groupwise
registration methods, with blue for the conventional method, green
for ABSORB, and red for our method, respectively. Also, the blue “†” is
used to denote the significant improvement on ROIs achieved by our
method over the conventional method, while the red “*” is used to
denote the significant improvement by our method over ABSORB. It
can be observed that our method outperforms the conventional
method on most ROIs. On the other hand, although our method
produces slightly better overlap ratio than ABSORB, the improvement
onal method, the ABSORB method, and our groupwise registration method.
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Fig. 10. The evolution curves on tissue overlap ratio during the registration. From left to right shows the evolution curve of overlap ratio on white matter, gray matter, and ventricle,
respectively. In each figure, the evolution curves by the conventional method, pseudo sharp mean method, and our method are displayed in blue, green, and red, respectively.
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on each ROI is not significant after performing t-test. However, as we
will show below, our method is faster; it uses only around 1/3
computation time of ABSORB.

Computation time

We perform all of the above experiments on Dell workstation (with
8 Xeon CPU@2.66 GHz and 32 G DDR memory). The computation time
of the tree-based method, the conventional method, ABSORB, and our
method is provided in Table 2. It is worth noting that we set the same
Fig. 11. The overlap ratios of 32 manually delineated labels in 16 NIREP brain images. The
groupwise registration method are shown in blue, green, and red, respectively. It can be obse
conventional method. Compared with ABSORB, our registration results outperform in most R
and 66.66% by our method. For each ROI, we use blue “†” and red “*” to denote the significa
conventional method and ABSORB, respectively.
number of iterations (10 rounds) for the conventional method and our
method. For ABSORB, we choose its optimal parameters. Our method is
faster than ABSORB, but slightly slower than the conventional method,
and much slower than the tree-based method since it performs only 1
round of registration for the whole group.

Discussion

MST-based strategy is used in each round of our groupwise
registration method to improve the robustness of registration results.
overlap ratios by the conventional groupwise registration method, ABSORB, and our
rved that our method achieves much better alignment result in all ROI regions than the
OIs. The overall overlap ratio is 61.25% by the conventional method, 65.31% by ABSORB,
nt improvement of overlap ratio (with p-value less than 0.05) by our method over the
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Fig. 12. The overlap ratios of 54 manually delineated labels in 40 LONI LPBA40 dataset. The overlap ratios by the conventional groupwise registration method, ABSORB, and our
groupwise registrationmethod on each ROI are shown in blue, green, and red, respectively. For each ROI, we use blue “†” to denote the significant improvement of overlap ratio (with
p-value less than 0.05) by our method over the conventional method.
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In order to evaluate the contributionofMST inourmethod,we apply our
groupwise registration method, with and without MST (by keeping all
other same parameters), to 18 elderly brains, NIREP data set, and LONI
LPBA 40 data set, respectively. Table 3 shows their overall average
overlap ratio and the standard deviation. Obviously our groupwise
registration method with MST consistently achieves better registration
accuracy than the counterpart without MST, demonstrating the
advantage of employing MST in our complete method.

Particularly, we notice that the improvement on registration
accuracy is much more in the data set of 18 elderly brains than the
Table 2
Computation time of the tree-based method, the conventional method, ABSORB, and
our method.

Dataset Num. Image size Tree-based
method

Conventional
method

ABSORB Our
method

Elderly
brains

18 256×256×124 2.5 h 4.0 h 6.0 h 5.2 h

NIREP 16 256×300×256 4 h 9.4 h 39.0 h 11.1 h
LONI
LPBA40

40 181×271×181 4.5 h 20.5 h 60.0 h 22.6 h

Computation environment: 8 Xeon CPU @2.66 GHz, 32 G DDR memory.
other two data sets (NIREP and LONI LBPA40). One explanation is that
the anatomical shape variations in 18 elderly brains (see in Fig. 6) are
much larger than those in NIREP and LBPA40 data sets. Our method
can fully take the advantage of MST to hierarchically register each
subject to the groupmean image by composting multiple segments of
transformation fields from the underlying node (individual subject) to
the root of the tree (group mean image). The minimal spanning tree
used in the first round of our groupwise registration is shown in
Fig. 13. Obviously each pair of neighboring nodes in the tree has
similar anatomical shape. In brief summary, this experiment strongly
demonstrates the importance of using MST-based registration in each
round of groupwise registration, especially in case of large anatomical
variations in the data set.
Table 3
The overall overlap ratio and standard deviation by our method with and without MST
in three data sets.

Method 18 elderly brains NIREP LONI LPBA40

Our method with MST 78.07% (±2.16%) 66.66% (±3.64%) 70.36% (±3.73%)
OurmethodwithoutMST 75.28% (±2.38%) 66.05% (±3.34%) 69.15% (±4.26%)
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Fig. 13. The minimal spanning tree (MST) built for the 18 elderly brains in the first iteration (t=1). Each node in the MST is corresponding with a subject image shown in Fig. 6.
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Conclusion

We have demonstrated the importance of always keeping a sharp
group mean image during the entire groupwise registration proce-
dure. In order to improve the overall registration performance of the
whole population, we generalize a popular unbiased groupwise
registration method in this paper. In our new framework, different
subjects are adaptively weighed to construct the sharp group mean
image, according to their similarities to the previous-estimated group
mean image. Also, we utilize a tree-based registration to improve the
registration quality in each round of groupwise registration. Based on
these two innovative formulations, our groupwise registration
method has achieved much better results than other state-of-the-art
groupwise registration methods, and the tree-based registration
method, using simulated and real data.

In the current method, we only use the intensity-based registra-
tion method, i.e., Diffeomorphic Demons (Vercauteren et al., 2009), as
a pairwise registration component in each round of groupwise
registration. However, minimizing the intensity difference does not
necessarily mean the good anatomical correspondences across sub-
jects. In our future work, we will first integrate other feature-based
registration methods, e.g., HAMMER in (Shen, 2007), into our
groupwise registration framework. Second, since it is very important
to process the large population data efficiently in many clinical
applications, we will improve the overall registration speed by
optimizing the program and using the learning-based method for
fast predication of deformation field as we did for our pairwise
registration method (Kim et al., 2010). Finally, we will also apply our
groupwise registration method to various neuroscience studies, such
as atlas building for early human brain development (Kazemi et al.,
2007) and Alzheimer's Disease study using ADNI data (ADNI, 2004).

Appendix A. Estimation of group mean image

After calculating the weight ω̂t
s xð Þ for each subject s at each

location x and removing all un-necessary terms withMt, the objective
function F1 in SP1 becomes:

F1 Mt
� �

= ∑N
s = 1∑x ω̂t

s xð Þ⋅D It−1
s ;Mt

; x; b
� �n o

= ∑N
s = 1∑x ω̂t

s xð Þ⋅∑y∈Pb xð Þ‖I
t−1
s yð Þ−Mt yð Þ‖2

n o
:

Here x and y denote the arbitrary spatial location in the common
space. Pb denotes a local (spherical) image patch, thus ∀x∈Pb(y)⇒
y∈Pb(x). D is the overall similarity in the local image patch. The
estimation of Mt can be calculated by requiring the derivative
∂F1

∂Mt yð Þ = −2⋅∑N
s=1∑x∈Pb yð Þω̂

t
s xð Þ⋅ It−1

s yð Þ−Mt yð Þ� �
= 0. As the result,

we get:
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Pb yð Þj j is the total number of points in the neighborhood Pb yð Þð Þ

⇒M yð Þ = 1
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N
s=1∑x∈Pb yð Þω̂
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s xð Þ⋅It−1

s yð Þ

= ∑N
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s xð Þ

 �
It−1
s yð Þ:

By swapping the variable x and y, we obtain the Eq. (9) in the paper
to compute the mean image at each point x.

Appendix B. The objective function in step 2

Recall that Ist= Is
0(gst(x)) is the deformed Is

0 w.r.t. the transformation
field gs

t. Then, after determining the group mean image M̂
t and

weights ω̂t
s xð Þ, the overall objective function in Eq. (4) turns to be the

function of transformation fields G:

F2 Gð Þ = ∑
N

s=1
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